Skip to main content
Log in

Comparison and analysis of main effects, epistatic effects, and QTL × environment interactions of QTLs for agronomic traits using DH and RILs populations in rice

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Two genetic linkage maps based on doubled haploid (DH) and recombinant inbred lines (RILs) populations, derived from the same indica-japonica cross ‘Samgang × Nagdong’, were constructed to analyze the quantitative trait loci (QTLs) affecting agronomic traits in rice. The segregations of agronomic traits in RILs population showed larger variations than those in DH population. A total of 10 and 12 QTLs were identified on six chromosomes using DH population and seven chromosomes using RILs population, respectively. Three stable QTLs including pl9.1, ph1.1, and gwp11.1 were detected through different years. The percentages of phenotypic variation explained by individual QTLs ranged from 8 to 18% in the DH population and 9 to 33% in the RILs population. Twenty-three epistatic QTLs were identified in the DH population, while 21 epistatic QTLs were detected in the RILs population. Epistatic interactions played an important role in controlling the agronomic traits genetically. Four significant main-effect QTLs were involved in the digenic interactions. Significant interactions between QTLs and environments (QE) were identified in two populations. The QTLs affecting grain weight per panicle (GWP) were more sensitive to the environmental changes. The comparison and QTLs analysis between two populations across different years should help rice breeders to comprehend the genetic mechanisms of quantitative traits and improve breeding programs in marker-assisted selection (MAS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basten C, Weir BS, Zeng ZB. 1997. QTL Cartographer: a reference manual and tutorial for QTL mapping Bernardo R. 2008. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci. 48: 1649–1664

    Google Scholar 

  • Cho YG, Eun MY, McCouch SR, Chae YA. 1994. The semi-dwarf gene, sd-1, of rice (Oryza sativa L.). II. Molecular mapping and marker-assisted selection. Theor. Appl. Genet. 89: 54–59

    CAS  Google Scholar 

  • Cho YG, Kang HJ, Lee JS, Lee YT, Lim SJ, Gauch H, Eun MY, McCouch SR. 2007. Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations. Crop Sci. 47: 2403–2417

    Article  Google Scholar 

  • He P, Li JZ, Zheng XW, Shen LS, Lu CF, Chen Y, Zhu LH. 2001. Comparison of molecular linkage maps and agro nomic trait loci between DH and RIL populations derived from the same rice cross. Crop Sci. 41: 1240–1246

    Article  CAS  Google Scholar 

  • Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar HE, Zhuang JY, Zheng KL, Liu GF, Wang GC, Sidhu SJ, Srivantaneeyakul S et al.. 2003. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor. Appl. Genet. 107: 679–690

    Article  PubMed  Google Scholar 

  • Hittalmani S, Shashidhar HE, Bagali PG, Huang N, Sidhu JS, Singh VP, Khush GS. 2002. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica 125: 207–214

    Article  CAS  Google Scholar 

  • Ishimaru K, Yano M, Aoki N, Ono K, Hirose T, Lin SY, Monna L, Sasaki T, Ohsugi R. 2001. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor. Appl. Genet. 102: 793–800

    Article  CAS  Google Scholar 

  • Kobayashi S, Fukuta Y, Sato T, Osaki M, Khush GS. 2003. Molecular marker dissection of rice (Oryza sativa L.) plant architecture under temperate and tropical climates. Theor. Appl. Genet. 107: 1350–1356

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA. 1987. MAPMAKER: an inter active computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Oh CS, Suh JP, McCouch SR, Ahn SN. 2005. Identification of QTLs for domestication-related and agro nomic traits in an Oryza sativa × O. rufipogon BC1F7 population. Plant Breed. 124: 209–219

    Article  CAS  Google Scholar 

  • Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, et al. 2003a. Control of tillering in rice. Nature 422: 618–621

    Article  CAS  PubMed  Google Scholar 

  • Li ZK, Pinson SR, Park WD, Paterson AH, Stansel JW. 1997. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145: 453–465

    CAS  PubMed  Google Scholar 

  • Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, et al. 2003b. QTL × environment interactions in rice. I. Heading date and plant height. Theoretical and Applied Genetics 108: 141–153

    Article  CAS  PubMed  Google Scholar 

  • Liang F, Deng Q, Wang Y, Xiong Y, Jin D, Li J, Wang B. 2004. Molecular marker-assisted selection for yield-enhancing genes in the progeny of “9311 × O. rufipogon ” using SSR. Euphytica 139: 159–165

    Article  CAS  Google Scholar 

  • Lincoln S, Daley M, Lander E. 1992. Constructing genetic maps with MAPMAKER /EXP 3.0. Whitehead Institute Technical Report, 3rd Ed. Whitehead Institue, Cambridge, Mass

    Google Scholar 

  • Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L. 1996. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor. Appl. Genet. 93: 1211–1217

    Article  CAS  Google Scholar 

  • Marri P, Sarla N, Reddy L, Siddiq E. 2005. Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet. 6: 33

    Article  PubMed  Google Scholar 

  • McCouch SR, Doerge RW. 1995. QTL mapping in rice. Trends Genet. 11: 482–487

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76: 815–829

    Article  CAS  Google Scholar 

  • Mei HW, Li ZK, Shu QY, Guo LB, Wang YP, Yu XQ, Ying CS, Luo LJ. 2005. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor. Appl. Genet. 110: 649–659

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Qiao YL, Jiang WZ, Rahman ML, Chu SH, Piao R, Han LZ, Koh HJ. 2008. Comparison of molecular linkage maps and QTLs for morphological traits in two reciprocal backcross populations of rice. Mol.Cells 25: 417–427

    CAS  PubMed  Google Scholar 

  • Qin Y, Kim S-M, Sohn J-K. 2008. Detection of main-effect QTLs, epistatic QTLs and QE interactions for grain Appearance of brown rice (Oryza sativa L.). J. Crop Sci. Biotech. 2: 151–156

    Google Scholar 

  • Rahman ML, Chu SH, Choi M, Li Qiao Y, Jiang W, Piao R, Khanam S, Cho Y, Jeung J, Jena KK. 2007. Identification of QTLs for some agronomic traits in rice using an intro gression line from Oryza minuta. Mol. Cells 24: 16–26

    CAS  PubMed  Google Scholar 

  • Ribaut J-M, Hoisington D. 1998. Marker-assisted selection: new tools and strategies. Trends Plant Sci. 3: 236–239

    Article  Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR. 2003. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 107: 1419–1432

    Article  CAS  PubMed  Google Scholar 

  • Shan J-X, Zhu M-Z, Shi M, Gao J-P, Lin H-X. 2009. Fine mapping and candidate gene analysis of spd6, responsible for small panicle and dwarfness in wild rice (Oryza rufi pogon Griff.). Theor. Appl. Genet. 119: 827–836

    Article  CAS  PubMed  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR. 2003. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet. 107: 479–493

    Article  CAS  PubMed  Google Scholar 

  • Wang DL, Zhu J, Li ZKL, Paterson AH. 1999. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor. Appl. Genet. 99: 1255–1264

    Article  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR. 1998. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150: 899–909

    CAS  PubMed  Google Scholar 

  • Xiao J, Li J, Yuan LP, Tanksley SD. 1996. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor. Appl. Genet. 92: 230–244

    Article  CAS  Google Scholar 

  • Xing Y, Tan Y, Hua J, Sun X, Xu C, Zhang Q. 2002. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor. Appl. Genet. 105: 248–257

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR. 1997. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol.Gen. Genet. 253: 535–545

    Article  CAS  PubMed  Google Scholar 

  • Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40: 761–767

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M. 1998. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor. Appl. Genet. 97: 37–44

    Article  CAS  Google Scholar 

  • Yan JQ, Zhu J, He CX, Benmoussa M, Wu P. 1999. Molecular marker-assisted dissection of genotype × environment interaction for plant type traits in rice (Oryza sati va L.). Crop Sci. 39: 538–544

    Article  Google Scholar 

  • Yano M. 2001. Genetic and molecular dissection of naturally occurring variation. Curr. Opin. Plant Biol. 4: 130–135

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. 2001. Genetic control of flowering time in rice, a short-day plant. Plant Physiol. 127: 1425–1429

    Article  CAS  PubMed  Google Scholar 

  • Yoon DB, Kang KH, Kim HJ, Ju HG, Kwon SJ, Suh JP, Jeong OY, Ahn SN. 2006. Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglu mis and the O. sativa japonica cultivar Hwaseongbyeo. Theor. Appl. Genet. 112: 1052–1062

    Article  CAS  PubMed  Google Scholar 

  • You A, Lu X, Jin H, Ren X, Liu K, Yang G, Yang H, Zhu L, He G. 2006. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics 172: 1287–1300

    Article  PubMed  Google Scholar 

  • Yuan PR, Kim HJ, Chen QH, Ju HG, Lee SJ, Ji SD, Ahn SN. 2009. QTL dissection of agronomic and domestication traits using introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (O. sativa L.) background. J. Crop Sci. Biotech. 12: 241–248

    Google Scholar 

  • Zhang Y, Luo L, Xu C, Zhang Q, Xing Y. 2006. Quantitative trait loci for panicle size, heading date and plant height co segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor. Appl. Genet. 113: 361–368

    Article  CAS  PubMed  Google Scholar 

  • Zhuang JY, Fan YY, Rao ZM, Wu JL, Xia YW, Zheng KL. 2002. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor. Appl. Genet. 105: 1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL. 1997. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor. Appl. Genet. 95: 799–808

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Keun Sohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Qin, Y., Jia, B. et al. Comparison and analysis of main effects, epistatic effects, and QTL × environment interactions of QTLs for agronomic traits using DH and RILs populations in rice. J. Crop Sci. Biotechnol. 13, 235–241 (2010). https://doi.org/10.1007/s12892-010-0076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-010-0076-x

Key words

Navigation