Skip to main content
Log in

Isolation and characterization of lipopolysaccharides from different rhizobial isolates

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Formation of nodules on roots or in stems (in some cases) of leguminous plants is the unique ability of gram-negative bacteria, Rhizobia, which converts atmospheric nitrogen into usable forms by the host plant. Lipopolysaccharide (LPS) is the outer membrane component of the gram-negative bacteria, known to be an essential factor in host recognition, specificity, and initial infection processes. In the present study, we extracted lipopolysaccharides from different rhizobial isolates by a modified phenol-water method and partially characterized by polyacrylamide gel electrophoresis with silver staining. The results showed two separate banding regions, LPS-I and LPS-II. The high molecular weight and electrophoretic mobility of LPS-I region resembles that of lysozyme, used as a standard marker. The LPS-II region has a low molecular weight and electrophoretic mobility greater than that of lysozyme. The LPS-II region was due to incomplete LPS, which either lacks the entire O-antigen repeating unit or contains only one or two repeating units. The banding patterns of LPS vary among the different rhizobial isolates. Results revealed that the type of LPS structure and banding regions greatly facilitate the further characterization of the LPS modifications required for symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bauer WD. 1981. Infection of legumes by rhizobia. Annu. Rev. Plant Physiol. 32: 407–449

    Article  CAS  Google Scholar 

  • Brewin NJ. 1998. Tissue and cell invasion by Rhizobium: the structure and development of infection threads and symbio somes,. In HP Spaink, A Kondorosi, PJJ Hooykaas, eds, The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria, Kluwer Academic Publishers, Dordecht, pp 417–429

    Google Scholar 

  • Brewin NJ, Wood EA, Larkins AP, Galfre G, Butcher GW. 1986. Analysis of lipopolysaccharide from root nodule bac teroids of Rhizobium leguminosarum using monoclonal anti bodies. J. Gen. Microbiol. 132: 1959–1968

    CAS  Google Scholar 

  • Carlson RW. 1982. Surface chemistry, In WJ Broughton, ed, Nitrogen Fixation, Vol 2, Rhizobium, Clarendon Press, Oxford, pp 199–234

    Google Scholar 

  • Carlson RW. 1984. The heterogeneity of Rhizobium lipopolysaccharides. J. Bacteriol. 158: 1012–1017

    CAS  PubMed  Google Scholar 

  • Carlson RW, Lee R. 1983. A comparison of the surface polysac charides from Rhizobium leguminosarum 128C53smrr rif with the surface polysaccharides from its exo-1 mutant. Plant Physiol. 71: 223–228

    Article  CAS  PubMed  Google Scholar 

  • Carlson RW, Sanders RE, Napoli C, Albersheim P. 1978. Hostsymbiont interactions III. Purification and characterization of Rhizobium lipopolysaccharides. Plant Physiol. 62: 912–917

    Article  CAS  PubMed  Google Scholar 

  • Cava JR, Elias PM, Turowski DA, Noel KD. 1989. Rhizobium leguminosarum CFN42 genetic regions encoding lipopolysaccharide structures essential for complete nodule development on bean plants. J. Bacteriol. 171: 8–15

    CAS  PubMed  Google Scholar 

  • Dazzo FB, Truchet GL, Hollingsworth RI, Hrabak EM, Pankratz, HS, Philip-Hollingsworth S, Salzwedel JL, Chapaman K, Appenzeller L, Squartini A, Gerhold D, Orgambide G. 1991. Rhizobium lipopolysaccharide modu lates infection thread development in white clover root hairs. J. Bacteriol. 173: 5371–5384

    CAS  PubMed  Google Scholar 

  • de Maagd RA, Rao AS, Mulders IHM, Goosen-de Roo L, van Loosdrech MCM, Wiffelman CA, Lugtenberg BJJ. 1989. Isolation and characterization of mutants of Rhizobium legu minosarum bv. viciae 248 with altered lipopolysaccharides: possible role of surface charge or hydrophobicity in bacterial release from the infection thread. J. Bacteriol. 171: 1143–1150

    PubMed  Google Scholar 

  • D’Haeze W, Leoff C, Freshour G, Noel KD, Carlson RW. 2007. Rhizobium etli CE3 bacteroid lipopolysaccharides are struc turally similar but not identical to those produced by cultured CE3 bacteria. J. Biol. Chem. 282: 17101–17113

    Article  PubMed  Google Scholar 

  • Fomsgaard A, Freudenber MA, Galanos C. 1990. Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J. Clin. Microbiol. 28: 2627–2631

    CAS  PubMed  Google Scholar 

  • Forsberg LS, Carlson RW. 2008. Structural characterization of the primary O-antigenic polysaccharide of the Rhizobium leguminosarum 3841 lipopolysaccharide: isolation and identi fication of a new 3-acetimidoylamino-3-deoxyhexuronic acid glycosyl component. J. Biol. Chem. 283: 16037–16050

    Article  CAS  PubMed  Google Scholar 

  • Jabbouri S, Hannin M, Fellay R, Quesada-Vincens D, Ruehs BL, Carlson RW, Broughton WJ. 1996. Rhizobium species NGR234 host-specificity of nodulation locus III contains nod and fix genes. In G Stacey, B Mullin, PM Gresshoff, eds Biology of Plant-Microbe Interactions, Intl. Society Plant-Microbe Interact. St. Paul, pp. 319–324

    Google Scholar 

  • Jadhav SD. 2005. Assessment of biodiversity of native Rhizobia using morphological, biochemical and molecular techniques. M. Sc. thesis submitted in Indira Gandhi Agricultural University, Raipur

    Google Scholar 

  • Kalia A, Gupta RP. 2002. Nodule induction in non-legume by Rhizobia. Indian J. Microbiol. 42: 183–193

    Google Scholar 

  • Kannenberg EL, Carlson RW. 2001. Lipid A and O-chain modi fications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol. Microbiol. 39: 379–391

    Article  CAS  PubMed  Google Scholar 

  • Kesawat M.S, Manorama, Bhaganagare GR. 2007. Role of rhi zobial lipopolysaccharide in host specificity. Asian J. Microbiol. Biotech. Environ. Sci. 9: 959–964

    Google Scholar 

  • Noel KD, VandenBosch KA, Kulpaca B. 1986. Mutations in Rhizobium phaseoli that lead to arrested development of infection threads. J. Bacteriol. 168: 1392–1401

    CAS  PubMed  Google Scholar 

  • Puvanesarajah V, Schell FM, Gerhold D, Stacey G. 1987. Cell surface polysaccharides from Bradyrhizobium japonicum and a nonnodulating mutant. J. Bacteriol. 169: 137–141

    CAS  PubMed  Google Scholar 

  • Reuhs BL, Geller DP, Kim JS, Fox JE, Kolli VS, Pueppke SG. 1998. Sinorhizobium fredii and Sinorhizobium meliloti pro duce structurally conserved lipopolysaccharides and strainspecific K antigens. Appl. Environ. Microbiol. 64: 4930–4938

    CAS  PubMed  Google Scholar 

  • Schmidt EL. 1979. Initiation of plant root-microbe interactions. Annu. Rev. Microbiol. 33: 355–376

    Article  CAS  PubMed  Google Scholar 

  • Song SC, Lin LP. 1999. The transition of Rhizobium fredii lipopolysaccharides induced by soybean root exudation. Bot. Bull. Acad. Sin. 40: 73–78

    CAS  Google Scholar 

  • Summers ML, Botero LM, Busse SC, Mcdermott TR. 2000. The Sinorhizobium meliloti Lon protease is involved in regulating exopolysaccharide synthesis and is required for nodulation of alfalfa. J. Bacteriol. 182: 2551–2558

    Article  CAS  PubMed  Google Scholar 

  • Tsai CM, Frasch CE. 1982. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Ann. Biochem. 119: 115–119

    Article  CAS  Google Scholar 

  • Zevenhuizen LPTM, Scholten-Koerselman I, Posthumus MA. 1980. Lipopolysaccharides of Rhizobium. Arch. Microbiol. 125: 1–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manorama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesawat, M.S., Das, B.K., Bhaganagare, G.R. et al. Isolation and characterization of lipopolysaccharides from different rhizobial isolates. J. Crop Sci. Biotechnol. 12, 109–113 (2009). https://doi.org/10.1007/s12892-009-0101-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-009-0101-0

Key words

Navigation