Skip to main content
Log in

Methyl jasmonate alleviated salinity stress in soybean

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

We studied the role of methyl jasmonate (MeJA) in alleviating NaCl-induced salt stress on soybean growth and development in hydroponics medium. Soybean seedlings were exposed to 60 mM NaCl stress for 2 weeks, 24 h after the application of 20 and 30 µM MeJA. NaCl stress induced a significant reduction in plant growth, endogenous bioactive gibberellin (GA4), photosynthesis and transpiration rate, while a marked increase in the endogenous abscisic acid (ABA) and proline contents were recorded. MeJA application greatly mitigated the adverse effects of NaCl on soybean growth and endogenous hormones. MeJA significantly increased ABA levels, while the endogenous amount of GA4 was reduced by the application of NaCl. Our study revealed that MeJA counteracted the negative effects of NaCl stress on plant growth, chlorophyll content, leaf photosynthetic rate, leaf transpiration rate, and proline content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abel GH, MacKenzie AJ. 1964. Salt tolerance of soybean varieties (Glycine max L. Merill) during germination and later growth. Crop Sci. 4: 157–161

    Article  Google Scholar 

  • Ahmad P, Jhon R. 2005. Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Arc. Agro. Soil Sci. 51: 665–672

    Article  CAS  Google Scholar 

  • Al-Aghabary K, Zhu Z, Qinhua S. 2004. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nut. 27: 2101–2115

    Article  CAS  Google Scholar 

  • Amzallag GN, Lerner HR, Poljakoff-Mayber A. 1990. Exogenous ABA as a modulator of the response of Sorghum to high salinity. J. Exp. Bot. 41: 1529–1534

    Article  CAS  Google Scholar 

  • Anuradha S, Rao SSR. 2003. Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Reg. 40: 29–32

    Article  CAS  Google Scholar 

  • Aoki A, Kanegami A, Mihara M, Kojima T, Shiraiwa M, Takahara H. 2005. Molecular cloning and characterization of a novel soybean gene encoding a leucine-zipper-like protein induced to salt stress. Gene 356: 135–145

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Karim F, Rasul E. 2002. Interactive effects of gib berellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Reg. 36: 49–59

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207

    Article  CAS  Google Scholar 

  • Blumwald E, Grober A. 2006. Salt tolerance, In NG Halford, ed, Plant Biotechnology: Current and future uses of genetically modified crops, John Wiley and Sons Ltd., UK, pp. 206–224

    Google Scholar 

  • Boucaud J, Unger IA. 1976. Hormonal control of germination under saline conditions of three halophyte taxa in genus Suaeda. Physiol. Plant. 36: 197–200

    Article  Google Scholar 

  • Bohm W. 1979. Methods of studying root systems. Springer-Verlag, Berlin

    Google Scholar 

  • Chao WS, Gu YQ, Pautot V, Bray EA, Walling LL. 1999. Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiol. 120: 979–992

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Gusta LV. 1983. Abscisic acid-inducing freezing resistance in cultured plant cells. Plant Physiol. 73: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Cheong JJ, Choi YD. 2003. Methyl jasmonate as a vital substance in plants. Trends Genet. 19: 409–413

    Article  PubMed  CAS  Google Scholar 

  • Chon SU, Park JH, Choi WY, Jung SY. 2003. Differential physiological responses of soybean. Korea Soybean Digest 20: 17–27

    Google Scholar 

  • Creelman RA, Rao MV. 2002. The oxylipin pathway in Arabidopsis, In CR Somervile, EM Meyerowitz, eds, The Arabidopsis Book., American Society of Plant Biologists, USA

    Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kings RW, Kelly DB, Cunningham DB, Worna AF. 1980. Saline culture of crops. A general approach. Sci. 210: 399–404

    Article  CAS  Google Scholar 

  • Essa TA. 2002. Effect of salinity stress on growth and nutrient composition of three Soybean (Glycine max L. Merrill) culti vars. J. Agro. Crop Sci. 188: 86–93

    Article  CAS  Google Scholar 

  • Fedina IS, Tsonev TD. 1997. Effect of pretreatment with methyl jasmonate on the response of Pisum sativum to salt stess. J. Plant Physiol. 151: 735–740

    CAS  Google Scholar 

  • Flowers TJ, Yeo AR. 1995. Breeding for salinity resistance in crop plants: Where next? Aust. J. Plant Physiol. 22: 875–884

    Article  Google Scholar 

  • Gonzalez EM, Galvez L, Arrese-Igor C. 2001. Abscisic acid induces a decline in nitrogen fixation that involves leghemoglobin, but is independent of sucrose synthase activity. J. Exp. Bot. 52: 285–293

    Article  PubMed  CAS  Google Scholar 

  • Hoyos M, Zhang SQ. 2000. Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyper osmotic stress. Plant Physiol. 122: 1355–1363

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Chen CCS, Plant AL. 2000. Regulation by ABA of osmotic-stress-induced changes in protein synthesis in tomato roots. Plant Cell Environ. 23: 51–60

    Article  CAS  Google Scholar 

  • Kamboj JS, Browning G, Blake PS, Quinlan JD, Baker DA, Kamboj JS. 1999. GC-MS SIM analysis of abscisic acid and indole-3-acetic acid in shoot bark of apple root stocks. J. Plant Growth Reg. 28: 21–27

    Article  CAS  Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ. 2005. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salttolerant and salt-sensitive rice cultivars. J. Agron. Crop Sci. 191: 273–282

    Article  CAS  Google Scholar 

  • Kaya CH, Kirnak H, Higgs K. 2001. Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity. J. Plant Nut. 24: 357–367

    Article  CAS  Google Scholar 

  • Khadri M, Tejera NA, Lluch C. 2006. Alleviation of salt stress in common bean by exogenous abscisic acid supply. J. Plant Growth Reg. 25: 110–119

    Article  CAS  Google Scholar 

  • La Rosa DC, Hasegawa D, Rhodes D, Clithero MJ, Watad AEA, Bressan RA. 1987. Abscisic acid stimulated osmotic adjustment and involvement in adaptation of tobacco cells to NaCl. Plant Physiol. 85: 174–181

    Article  Google Scholar 

  • Lauchli A. 1984. Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions, In RC Staples, GH Toeniessen, eds, Salinity tolerance in plants. Strategies for crop improvement. John Wiley and Sons, New York, pp. 171–187

    Google Scholar 

  • Lee IJ, Foster KR, Morgan PW. 1998. Photoperiod control of gibberellin levels and flowering in Sorghum. Plant Physiol. 116: 1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Montero E, Cabot C, Barcelo J, Poschenrieder C. 1997. Endogenous abscisic acid levels are linked to decreased growth of bush bean plants treated with NaCl. Physiol. Plant. 101: 17–22

    Article  CAS  Google Scholar 

  • Murillo-Amador B, Yamada S, Yamaguchi T, Rueda-Puente E, Avila-Serrano N, Garcia-Hernandez JL, Lopez-Aguilar R, Troyo-Dieguez E, Nieto-Garibay A. 2007. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J. Agron. Crop Sci. 193: 413–421

    Article  CAS  Google Scholar 

  • Navarro JM, Martinez V, Carvajal M. 2000. Ammonium, bicarbonate and calcium effects on tomato plants grown under saline conditions. Plant Sci. 157: 89–96

    Article  PubMed  CAS  Google Scholar 

  • Norlyn JD, Epstein E. 1984. Variability in salt tolerance of four triticale lines at germination and emergence. Crop Sci. 24: 1090–1992

    Google Scholar 

  • Qi QG, Rose PA, Abrams GD, Taylor DC, Abrams SR, Cutler AJ. 1998. (+)-Abscisic acid metabolism, 3-ketoacyl-coenzyme A synthase gene expression, and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol. 117: 979–987

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Kim SK, Jang SW, Choo YS, Sohn EY, Lee IJ. 2005. Effect of jasmonic acid on endogenous gibberellins and abscisic acid in rice under NaCl stress. Biologia Plant. 49: 447–450

    Article  CAS  Google Scholar 

  • Serrano R, Gaxiola R. 1994. Microbial models and salt stress tolerance in plants. Crit. Rev. Plant Sci. 13: 121–138

    Article  CAS  Google Scholar 

  • Thaler JS. 1999. Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399: 686–688

    Article  CAS  Google Scholar 

  • Velitcukova M, Fedina I. 1998. Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate. Photosynthetica 35: 89–97

    Article  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH. 2001. Effects of salinity on endogenous ABA, IAA, JA and SA in Iris hexagona. J. Chem. Ecol. 27: 327–342

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Hause B. 2002. Jasmonates and octadecanoids: signals in plant stress responses and development. Prog. Nucleic Acid Res. Mol. Biol. 72: 165–221

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Parthier B. 1997. Jasmonate-signalled plant gene expression. Trends Plant Sci. 2: 302–307

    Article  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ. 1999. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ. 22: 559–565

    Article  CAS  Google Scholar 

  • Yoon BS, Jin CJ, Un PS, Cho DH. 2005. Change in photosynthesis, proline content, and osmotic potential of Corn seedling under high-saline condition. Korean J. Crop Sci. 50: 28–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, J.Y., Hamayun, M., Lee, SK. et al. Methyl jasmonate alleviated salinity stress in soybean. J. Crop Sci. Biotechnol. 12, 63–68 (2009). https://doi.org/10.1007/s12892-009-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-009-0060-5

Key words

Navigation