Skip to main content
Log in

In silico identification of cis-regulatory elements of phosphate transporter genes in rice (Oryza sativa L.)

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Promoter sequences of 13 Phosphate Transporter genes of Oryza sativa L. (OsPTs) have been analyzed in silico to identify their cis-regulatory elements (CREs). The DNA sequences of these OsPT genes were mined from NCBI gene databases. MEGABLAST program was used to align these sequences to Rice Genome Database in obtaining their complete sequences. The upstream region (−1 to −400) of the complete gene sequences were analyzed using SIGNALSCAN program provided by PLACE database of cis-regulatory element motives. From this procedure, 153 types of CRE were identified. Four of these CREs were found on all of the OsPT genes: ARR1AT, CAATBOX1, CACTFTPPCA1, and DOFCOREZM. Among these CREs, CACTFTPPCA1 was found with 3 to 15 duplications in each cis-regulatory sequence. In addition, each OsPT gene has typical CREs that can only be found in the respective genes. The total number of these typical CREs is 54, and one of them was a binding site for a bHLH-like protein, CACGTGMOTIF or the G-box. Moreover, several E-boxes which also functioned as a binding site for a bHLH-like protein were identified in all OsPTs except in OsPT1, OsPT6, and OsPT8. There were significant correlations (p < 0.05) between mRNA levels of OsPT1 to OsPT11 in rice root with or without inoculation of Glomus intradices reported by Paszkowskidagger et al. (2002) and the duplication numbers of ARR1AT, CAATBOX1, CACTFTPPCA1, CURECORECR, and WRKY71OS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atchley WR, Fitch WM. 1997. A natural classification of the basic helix-loop-helix class of transcription factors. Proc. Natl. Acad. Sci. USA 94: 5172–5176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Yosef B. 1991. Root excretion and their environmental effects: Influence on availability of phosphorus. In Y Weisel, A Eschel, V Kafkafi, eds, Plant Roots, The Hidden Half. New York: Marcel Dekker, pp 529–557

    Google Scholar 

  • Borello U, Ceccarelli E, Giuliano G. 1993. Constitutive, light-responsive and circadian clock-responsive factors compete for the different I box elements in plant light-regulated promoters. Plant J. 4: 611–619

    Article  CAS  PubMed  Google Scholar 

  • Buck MJ, Atchley WR. 2003. Phylogenetic analysis of plant basic helix-loop-helix proteins. J. Mol. Evol. 56: 742–750

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Wei J, Li X, Xu C, Wang S. 2007. A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. Plant Biotechnol. J. 5: 664–674

    Article  CAS  PubMed  Google Scholar 

  • Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider Poetsch H, Bothe H. 1993. Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J. Plant Physiol. 141: 33–39

    Article  CAS  Google Scholar 

  • Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P. 2004. Cis-regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate car boxylase gene. Plant Cell 16: 1077–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T. 1999. Plant cis-acting regulatory DNA Elements (PLACE) database. Nucleic Acids Res. 27: 297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javadi M, Beuerleln JE, Arscott TG. 1991. Effects of phosphorus and copper on factors influencing nutrient uptake, photosynthesis, and grain yield of wheat. J. Sci. 91: 191–194

    CAS  Google Scholar 

  • Koehler D, Johnson KD, Varner JE, Kende H. 2004. Differential effects of mannitol on gibberellin-regulated phospholipid synthesis and enzyme activities of the CDP-choline pathway in barley aleurone cells. Planta 104: 267–271

    Article  Google Scholar 

  • Liu C, Mucchal US, Uthappa M, Kononowicz AK, Raghothama KG. 1998. Tomato phosphate transporter genes are differen tially regulated in plant tissues by phosphorus. Plant Physiol. 116: 91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazelis M, Vennesland B. 1957. Carbon dioxide fixation into oxalacetate in higher plants. Plant Physiol. 32: 591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka A, Sakai H, Iwakoshi S. 2002. His-Asp phosphorelay signal transduction in higher plants: Receptors and response regulators for cytokinin signaling in Arabidopsis thaliana. Genes Genet. Syst. 77: 383–391

    Article  CAS  PubMed  Google Scholar 

  • Okumura S, Mitsukawa N, Shirano Y, Shibata D. 1998. Phosphate transporter gene family of Arabidobsis thaliana. DNA Res. 5: 261–269

    Article  CAS  PubMed  Google Scholar 

  • Panavas T, Panaviene Z, Pogany J, Nagy PD. 2003. Enhancement of RNA synthesis by promoter duplication in tombusviruses. Virology 310: 118–129

    Article  CAS  PubMed  Google Scholar 

  • Papp B, Pal C, Hurst LD. 2003. Evolution of cis-regulatory ele ments in duplicated genes of yeast. Trends Genet. 19: 417–422

    Article  CAS  PubMed  Google Scholar 

  • Paszkowskidagger U, Krokendagger S, Roux C, Briggs SP. 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 99: 13324–13329

    Article  Google Scholar 

  • Prestridge DS. 1991. SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7: 203–206

    CAS  PubMed  Google Scholar 

  • Quinn JM, Barraco P, Eriksson M, Merchant S. 2000. Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element. J. Biol. Chem. 275: 6080–6089

    Article  CAS  PubMed  Google Scholar 

  • Ross EJ, Stone JM, Elowsky CG, Arredondo-Peter R, Klucas RV, Sarath G. 2004. Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. J. Exp. Bot. 55: 1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Sakai H, Aoyama T, Oka A. 2000. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24: 703–711

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116: 447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirsat A, Wilford N, Croy R, Boulter D. 1989. Sequences responsible for the tissue specific promoter activity of a pea-legumin gene in tobacco. Mol. Gen. Genet. 215: 326–331

    Article  CAS  PubMed  Google Scholar 

  • Stoger S, Parker M, Christou P, Casey R. 2001. Pea legumin overexpressed in wheat endosperm assembles into an ordered paracrystalline matrix. Plant Physiol. 125: 1732–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storozhenko S, De Pauw P, Van Montagu M, Inze D, Kushnir S. 1998. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol. 118: 1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi M, Sasaki N, Tsuge T, Aoyama T, Oka A. 2007. ARR1 Directly activates cytokinin response genes that encode proteins with diverse regulatory functions. Plant Cell Physiol. 48: 263–277

    Article  CAS  PubMed  Google Scholar 

  • Varadarajan DK. 2003. Molecular regulation of phosphate star vation-induced processes in plants [dissertation]. Indiana: Purdue University

    Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P. 2005. OsPTF1, A novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol. http://www.plantphysiol.org/cgi/content/short/pp.105.063115v1. [10 Sep 2007]

  • Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203–214

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ. 2004. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 134: 1500–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelinus Rocky Hatorangan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatorangan, M.R., Sentausa, E. & Wijaya, G.Y. In silico identification of cis-regulatory elements of phosphate transporter genes in rice (Oryza sativa L.). J. Crop Sci. Biotechnol. 12, 25–30 (2009). https://doi.org/10.1007/s12892-008-0054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-008-0054-8

Key words

Navigation