Skip to main content

Advertisement

Log in

The effectiveness of microsatellite DNA as a genetic tool in crocodilian conservation

  • Technical Review
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Microsatellite DNA is among the several molecular tools used for determining genetic variability and inbreeding depression in threatened populations. It has been used extensively for population genetics studies in conservation of crocodilians. Even though single nucleotide polymorphisms have higher precision compared to microsatellite DNA markers, microsatellites offer a cost advantage which is particularly important to researchers in the global south. Here, we review the role of microsatellite DNA as a conservation tool in crocodilians. Employing appropriate keywords in three online databases, we studied 78 publications, where microsatellite DNA had been used to study crocodilian species. We found that 504 species-specific markers were designed for 13, out of a total of 24 crocodilian taxa. Genus Crocodylus had the highest number of species-specific markers and was the most studied taxa using microsatellites. Moreover, microsatellite markers developed for C. porosus were successful in cross amplification of microsatellite markers in 19 other crocodilian species. Microsatellite based studies had highest focus on analyses of multiple populations of a single species. Based on our review of microsatellite based studies on populations of crocodilian species, we recommend that microsatellite DNA markers are an effective conservation tool that can provide critical information on population structures of threatened crocodilian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharya KP, Khadka BK, Jnawali SR, Malla S, Bhattarai S, Wikramanayake E, Köhl M (2017) Conservation and population recovery of gharials (Gavialis gangeticus) in Nepal. Herpetologica 73:129–135

    Google Scholar 

  • Aggarwal RK, Lalremruata A, Dubey B (2015) Development of fourteen novel microsatellite markers of Crocodylus palustris, the Indian mugger, and their cross-species transferability in ten other crocodilians. Conserv Genet Res 7:197–200

    Google Scholar 

  • Amavet P, Rosso E, Markariani R, Pina CI (2008) Microsatellite DNA markers applied to detection of multiple paternity in Caiman latirostris in Santa Fe, Argentina. J Exp Zool Part A 309A:637–642

    CAS  Google Scholar 

  • Amavet PS, Vilardi JC, Rueda EC, Larriera A, Saidman BO (2012) Mating system and population analysis of the broad-snouted caiman (Caiman latirostris) using microsatellite markers. Amphibia-Reptilia 33:83–93

    Google Scholar 

  • Amavet PS, Rueda EC, Siroski PA, Larriera A, Saidman BO (2015) Isolation and characterization of new microsatellite markers for application in population genetic studies of Caiman latirostris and related species. Amphibia-Reptilia 36:175–180

    Google Scholar 

  • Amavet PS, Rueda EC, Vilardi JC, Siroski P, Larriera A, Saidman BO (2017) The broad-snouted caiman population recovery in Argentina. A case of genetics conservation. Amphibia-Reptilia 38:411–424

    Google Scholar 

  • Bashyal A, Gross BA, Venegas-Anaya M, Lowrance F, Densmore LD III (2014) Assessment of microsatellites in estimating inter-and intraspecific variation among Neotropical Crocodylus species. Genet Mol Res 13:5492–5502

    CAS  PubMed  Google Scholar 

  • Bishop JM, Leslie AJ, Bourquin SL, O’Ryan C (2009) Reduced effective population size in an overexploited population of the Nile crocodile (Crocodylus niloticus). Biol Conserv 142:2335–2341

    Google Scholar 

  • Budd KM, Spotila JR, Mauger LA (2015) Preliminary mating analysis of American Crocodiles, Crocodylus acutus, in Las Baulas, Santa Rosa, and Palo Verde National Parks, Guanacaste, Costa Rica, South America. J Herpetol 10:4–9.

    Google Scholar 

  • Campos JC, Mobaraki A, Abtin E, Godinho R, Brito JC (2018) Preliminary assessment of genetic diversity and population connectivity of the Mugger Crocodile in Iran. Amphibia-Reptilia 39:126–131

    Google Scholar 

  • Chaeychomsri W, Chaeychomsri S, Tuntirungkij M, Tabthipwon P, Noparatnaraporn N, Siripholvat V (2008a) Characterization of microsatellite markers for the siamese crocodile and amplification in the closely related genus Crocodylus. Kasetsart J Nat Sci 42:682–692

    CAS  Google Scholar 

  • Chaeychomsri W, Tabthipwon P, Noparatnaraporn N, Siripholvat V (2008b) Development of microsatellite markers for Siamese Crocodile (Crocodylus siamensis). Kasetsart Journal-Natural Science 42:256–262

    CAS  Google Scholar 

  • Chang YC, Li SH, Chang MH, Chen SL (2014) Isolation and characterization of 18 microsatellite loci for an endangered fresh water crocodile Tomistoma schlegelii. Conserv Genet Res 6:495–498

    Google Scholar 

  • Chowfin SM, Leslie AJ (2013) A preliminary investigation into nesting and nest predation of the critically endangered, gharial (Gavialis gangeticus) at Boksar in Corbett Tiger Reserve, Uttarakhand, India. Int J Biodivers Conserv 5:54–57

    Google Scholar 

  • Chowfin SM, Leslie AJ (2014) A multi-method approach for the inventory of the adult population of a critically endangered crocodilian, the Gharial (Gavialis gangeticus) at Dhikala, Corbett Tiger Reserve incorporating direct counts and trail cameras. Int J Biodivers Conserv 6:148–158

    Google Scholar 

  • CSG (1993) Crocodile conservation and management in India. Report of the CSG workshop 1st–3rd March, 1993, Madras Crocodile Bank Trust Madras India

  • Cunningham SW, Shirley MH, Hekkala ER (2016) Fine scale patterns of genetic partitioning in the rediscovered African crocodile, Crocodylus suchus (Saint-Hilaire 1807). PeerJ 4:e1901

    PubMed  PubMed Central  Google Scholar 

  • Dalzell P, Miles LG, Isberg SR, Glenn TC, King C, Murtagh V, Moran C (2009) Standardized reference ideogram for physical mapping in the saltwater crocodile (Crocodylus porosus). Cytogenet Genome Res 127:204–212

    CAS  PubMed  Google Scholar 

  • Davis LM, Glenn TC, Elsey RM, Brisbin Jr IL, Rhodes WE, Dessauer HC, Sawyer RH (2001a) Genetic structure of six populations of American alligators: a microsatellite analysis. In: Grigg GC, Seebacher F, Franklin CE (eds) Crocodilian biology and evolution. Surrey Beatty & Sons, Australia, pp 38–50

    Google Scholar 

  • Davis LM, Glenn TC, Elsey RM, Dessauer HC, Sawyer RH (2001b) Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis. Mol Ecol 10:1011–1024

    CAS  PubMed  Google Scholar 

  • Davis LM, Glenn TC, Strickland DC, Guillette Jr LJ, Elsey RM, Rhodes WE, Dessauer HC, Sawyer RH (2002) Microsatellite DNA analyses support an east-west phylogeographic split of American alligator populations. J Exp Zool Part B 294:352–372

    CAS  Google Scholar 

  • de Oliveira DP, Farias IP, Marioni B, Campos Z, Hrbek T (2010) Microsatellite markers for mating system and population analyses of the spectacled caiman Caiman crocodilus (Linnaeus 1758). Conserv Genet Res 2:181–184

    Google Scholar 

  • De Thoisy B, Hrbek T, Farias IP, Vasconcelos WR, Lavergne A (2006) Genetic structure, population dynamics, and conservation of black caiman (Melanosuchus niger). Biol Conserv 133:474–482

    Google Scholar 

  • Dever JA, Densmore LD III (2001) Microsatellites in Morelet's crocodile (Crocodylus moreletii) and their utility in addressing crocodilian population genetics questions. J Herpetol 35:541–544

    Google Scholar 

  • Dever JA, Strauss RE, Rainwater TR, McMurry ST, Densmore LD III (2002) Genetic diversity, population subdivision, and gene flow in Morelet's crocodile (Crocodylus moreletii) from Belize, Central America. Copeia 4:1078–1091

    Google Scholar 

  • Elsey R, Woodward A, Balaguera-Reina SA (2019) Alligator mississippiensis. The IUCN Red List of Threatened Species 2019:e.T46583A3009637. Accessed 3 Apr 2020

  • FitzSimmons NN, Tanksley S, Forstner MRJ, Louis EE, Daglish R, Gratten J, Davis S (2001) Microsatellite markers for Crocodylus: new genetic tools for population genetics, mating system studies and forensics. In: Grigg GC, Seebacher F, Franklin CE (eds) Crocodilian biology and evolution. Surrey Beatty & Sons, Australia, pp 51–57

    Google Scholar 

  • Fitzsimmons NN, Buchan JC, Lam PV, Polet G, Hung TT, Thang NQ, Gratten J (2002) Identification of purebred Crocodylus siamensis for reintroduction in Vietnam. J Exp Zool Part B 294:373–381

    CAS  Google Scholar 

  • Ghosh A, Johnson MG, Osmanski AB, Louha S, Bayona-Vásquez NJ, Glenn TC, Gongora J, Green RE, Isberg S, Stevens RD, Ray DA (2020) A high-quality reference genome assembly of the saltwater crocodile, Crocodylus porosus, reveals patterns of selection in crocodylidae. Genome Biol Evol 12:3635–3646

    PubMed  Google Scholar 

  • Glenn TC, Stephan W, Dessauer HC, Braun MJ (1996) Allelic diversity in alligator microsatellite loci is negatively correlated with GC content of flanking sequences and evolutionary conservation of PCR amplifiability. Mol Biol Evol 13:1151–1154

    CAS  PubMed  Google Scholar 

  • Glenn TC, Dessauer HC, Braun MJ (1998) Characterization of microsatellite DNA loci in American alligators. Copeia 3:591–601

    Google Scholar 

  • Godshalk RE (2006) Phylogeography and conservation genetics of the yacare caiman (Caiman yacare) of South America. PhD Dissertation, University of Florida.

  • González-Trujillo R, Rodriguez D, Gonzalez-Romero A, Forstner MRJ, Densmore LD III, Reynoso VH (2012) Testing for hybridization and assessing genetic diversity in Morelet's crocodile (Crocodylus moreletii) populations from central Veracruz. Conserv Genet 13:1677–1683

    Google Scholar 

  • Hekkala ER, Amato G, DeSalle R, Blum MJ (2010) Molecular assessment of population differentiation and individual assignment potential of Nile crocodile (Crocodylus niloticus) populations. Conserv Genet 11:1435–1443

    Google Scholar 

  • Hekkala ER, Platt SG, Thorbjarnarson JB, Rainwater TR, Tessler M, Cunningham SW, Twomey C, Amato G (2015) Integrating molecular, phenotypic and environmental data to elucidate patterns of crocodile hybridization in Belize. R Soc Open Sci 2:150409

    PubMed  PubMed Central  Google Scholar 

  • Hinlo MRP, Tabora JA, Bailey CA, Trewick S, Rebong G, Weerd M, Pomares CC, Engberg SE, Brenneman RA, Louis E Jr (2014) Population genetics implications for the conservation of the Philippine Crocodile Crocodylus mindorensis Schmidt, 1935 (Crocodylia: Crocodylidae). JoTT 6:5513–5533

    Google Scholar 

  • Hu Y, Wu XB (2010) Multiple paternity in Chinese alligator (Alligator sinensis) clutches during a reproductive season at Xuanzhou Nature Reserve. Amphibia-Reptilia 31:419–424

    Google Scholar 

  • Huang L, Wang YQ (2004) SSR polymorphism of Alligator sinensis and conservation strategy of genetic diversity. Acta Genetica Sinica 31:143–150

    CAS  PubMed  Google Scholar 

  • Hussain SA (1999) Reproductive success, hatchling survival and rate of increase of gharial Gavialis gangeticus in National Chambal Sanctuary, India. Biol Conserv 87:261–268

    Google Scholar 

  • Hussain SA, Badola R, Sharma R, Rao RJ (2013) Planning conservation for Chambal river basin taking gharial Gavialis gangeticus and ganges river dolphin Platanista gangetica as umbrella species. In: Sharma BK, Kulshreshtha S, Rahmani AR (eds) Faunal heritage of Rajasthan: conservation and management of vertebrates, India. Springer, Cham, pp 135–156

    Google Scholar 

  • Isberg SR, Chen Y, Barker SG, Moran C (2004) Analysis of microsatellites and parentage testing in saltwater crocodiles. J Hered 95:445–449

    CAS  PubMed  Google Scholar 

  • Isberg SR, Johnston SM, Chen YZ, Moran C (2006) First evidence of higher female recombination in a species with temperature-dependent sex determination: the saltwater crocodile. J Hered 97:599–602

    CAS  PubMed  Google Scholar 

  • IUCN (2019) The IUCN Red List of Threatened Species. Version 2019-2. https://www.iucnredlist.org

  • Jing W, Wang XL, Lan H, Fang SG (2009) Eleven novel microsatellite markers for the Chinese alligator (Alligator sinensis). Conserv Genet 10:543–546

    CAS  Google Scholar 

  • Jogayya KN, Meganathan PR, Dubey B, Haque I (2013) Novel microsatellite DNA markers for Indian Gharial (Gavialis gangeticus). Conserv Genet Res 5:787–790

    Google Scholar 

  • Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523

    CAS  PubMed  Google Scholar 

  • Katdare S, Srivathsa A, Joshi A, Panke P, Pande R, Khandal D, Everard M (2011) Gharial (Gavialis gangeticus) populations and human influences on habitat on the River Chambal, India. Aquat Conserv 21:364–371

    Google Scholar 

  • Lafferriere NAR et al (2016) Multiple paternity in a reintroduced population of the Orinoco crocodile (Crocodylus intermedius) at the El Frio Biological Station. Venezuela PLoS ONE 11:e0150245

    Google Scholar 

  • Lance SL, Tuberville TD, Dueck L, Holz-Schietinger C, Trosclair PL III, Elsey RM, Glenn TC (2009) Multiyear multiple paternity and mate fidelity in the American alligator, Alligator mississippiensis. Mol Ecol 18:4508–4520

    CAS  PubMed  Google Scholar 

  • Lang JW, Andrews HV (1994) Temperature-dependent sex determination in crocodilians. J Exp Zool 270:28–44

    Google Scholar 

  • Lang JW, Whitaker S (2010) Application of telemetry techniques in crocodilian research: Gharial (Gavialis gangeticus) spatial ecology in the Chambal River, India Telemetry in Wildlife Science. ENVIS Bull 13:161–170

    Google Scholar 

  • Lang J, Chowfin S, Ross PJ (2019) Gavialis gangeticus. The IUCN Red List of Threatened Species 2019: e.T8966A3148543. https://www.iucnredlist.org/species/8966/3148543.Accessed 02 Apr 2020

  • Lapbenjakul S, Thapana W, Twilprawat P, Muangmai N, Kanchanaketu T, Temsiripong Y, Unajak S, Peyachoknagul S, Srikulnath K (2017) High genetic diversity and demographic history of captive Siamese and Saltwater crocodiles suggest the first step toward the establishment of a breeding and reintroduction program in Thailand. PLoS ONE 12:e0184526

    PubMed  PubMed Central  Google Scholar 

  • Lewis JL, FitzSimmons NN, Jamerlan ML, Buchan JC, Grigg GC (2013) Mating systems and multiple paternity in the estuarine crocodile (Crocodylus porosus). J Herpetol 47:24–33

    Google Scholar 

  • Mauger LA, Velez E, Cherkiss MS, Brien ML, Mazzotti FJ, Spotila JR (2017) Conservation genetics of American crocodile, Crocodylus acutus, populations in Pacific Costa Rica. Nat Conserv 17:1–17

    Google Scholar 

  • McVay JD, Rodriguez D, Rainwater TR, Dever JA, Platt SG, McMurry ST, Forstner MRJ, Densmore LD III (2008) Evidence of multiple paternity in morelet's crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. J Exp Zool Part A 309A:643–648

    Google Scholar 

  • Miles LG, Isberg SR, Glenn TC, Lance SL, Dalzell P, Thomson PC, Moran C (2009a) A genetic linkage map for the saltwater crocodile (Crocodylus porosus). BMC Genomics 10:11

    Google Scholar 

  • Miles LG, Isberg SR, Moran C, Hagen C, Glenn TC (2009b) 253 Novel polymorphic microsatellites for the saltwater crocodile (Crocodylus porosus). Conserv Genet 10:963–980

    CAS  Google Scholar 

  • Miles LG, Lance SL, Isberg SR, Moran C, Glenn TC (2009c) Cross-species amplification of microsatellites in crocodilians: assessment and applications for the future. Conserv Genet 10:935–954

    CAS  Google Scholar 

  • Milián-García Y et al (2011) Evolutionary history of Cuban crocodiles Crocodylus rhombifer and Crocodylus acutus inferred from multilocus markers. J Exp Zool Part A 315:358–375

    Google Scholar 

  • Milián-García Y, Jensen EL, Mena SR, Fleitas EP, Rodriguez GS, Manchena LG, Lopez GE, Russello MA (2016) Genetic evidence for multiple paternity in the critically endangered Cuban crocodile (Crocodylus rhombifer). Amphibia-Reptilia 37:273–281

    Google Scholar 

  • Muniz FL, Da Silveira R, Campos Z, Magnusson WE, Hrbek T, Farias IP (2011) Multiple paternity in the black caiman (Melanosuchus niger) population in the Anavilhanas National Park, Brazilian Amazonia. Amphibia-Reptilia 32:428–434

    Google Scholar 

  • Muniz F, Ximenes A, Bittencourt P, Hernández-Rangel S, Campos Z, Hrbek T, Farias I (2019) Detecting population structure of Paleosuchus trigonatus (Alligatoridae: Caimaninae) through microsatellites markers developed by next generation sequencing. Mol Biol Rep 46:2473–2484

    CAS  PubMed  Google Scholar 

  • Nair T (2010) Ecological and anthropogenic covariates influencing gharial Gavialis gangeticus distribution and habitat use in Chambal River, India. Unpublished Master’s Thesis, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

  • Nair T, Thorbjarnarson JB, Aust P, Krishnaswamy J (2012) Rigorous gharial population estimation in the Chambal: implications for conservation and management of a globally threatened crocodilian. J Appl Ecol 49:1046–1054. https://doi.org/10.1111/j.1365-2664.2012.02189.x

    Article  Google Scholar 

  • Ojeda GN, Amavet PS, Rueda EC, Siroski PA, Larriera A (2017) Mating System of Caiman yacare (Reptilia: Alligatoridae) described from Microsatellite Genotypes. J Hered 108:135–141

    PubMed  Google Scholar 

  • Oliveira DP, Marioni B, Farias IP, Hrbek T (2014) Genetic evidence for polygamy as a mating strategy in Caiman crocodilus. J Hered 105:485–492

    PubMed  Google Scholar 

  • Pacheco-Sierra G, Gompert Z, Dominguez-Laso J, Vazquez-Dominguez E (2016) Genetic and morphological evidence of a geographically widespread hybrid zone between two crocodile species, Crocodylusacutus and Crocodylus moreletii. Mol Ecol 25:3484–3498

    PubMed  Google Scholar 

  • Pacheco-Sierra G, Vázquez-Domínguez E, Pérez-Alquicira J, Suárez-Atilano M, Domínguez-Laso J (2018) Ancestral hybridization yields evolutionary distinct hybrids lineages and species boundaries in crocodiles, posing unique conservation conundrums. Front Ecol Evol 6:138

    Google Scholar 

  • Pan T, Wang H, Duan S, Ali I, Yan P, Cai R, Wang M, Zhang J, Zhang H, Zhang B, Wu X (2019) Historical population decline and habitat loss in a critically endangered species, the Chinese alligator (Alligator sinensis). Glob Ecol Conserv 20:e00692

    Google Scholar 

  • Puckett EE (2017) Variability in total project and per sample genotyping costs under varying study designs including with microsatellites or SNPs to answer conservation genetic questions. Conserv Genet Resour 9:289–304

    Google Scholar 

  • Rodriguez D, Cedeno-Vazquez JR, Forstner MR, Densmore LD III (2008) Hybridization between Crocodylus acutus and Crocodylus moreletii in the Yucatan Peninsula: II. Evidence from microsatellites. J Exp Zool Part A: Ecol Genet Physiol 309A:674–686

    CAS  Google Scholar 

  • Rodriguez D, Forstner MR, Moler PE, Wasilewski JA, Cherkiss MS, Densmore LD III (2011) Effect of human-mediated migration and hybridization on the recovery of the American crocodile in Florida (USA). Conserv Genet 12:449–459

    Google Scholar 

  • Rotstein DS, Schoeb TR, Davis LM, Glenn TC, Arnold BS, Gross TS (2002) Detection by microsatellite analysis of early embryonic mortality in an alligator population in Florida. J Wildl Dis 38:160–165

    CAS  PubMed  Google Scholar 

  • Russello MA, Brazaitis P, Gratten J, Watkins-Colwell GJ, Caccone A (2007) Molecular assessment of the genetic integrity, distinctiveness and phylogeographic context of the Saltwater crocodile (Crocodylus porosus) on Palau. Conserv Genet 8:777–787

    CAS  Google Scholar 

  • Ryberg WA, Fitzgerald LA, Honeycutt RL, Cathey JC (2002) Genetic relationships of American alligator populations distributed across different ecological and geographic scales. J Exp Zool Part B: Mol Dev Evol 294:325–333

    CAS  Google Scholar 

  • Serna-Lagunes R, Gonzalez D, Diaz-Rivera P (2012) Genetic variability in captive populations of Crocodylus moreletii (Crocodylia: Crocodylidae) using microsatellites markers. Rev Biol Trop 60:425–436

    PubMed  Google Scholar 

  • Shafer ABA et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87

    PubMed  Google Scholar 

  • Shafiei-Astani B, Ong AHK, Valdiani A, Tan SG, Yien CYS, Ahmady F, Alitheen NB, Ng WL, Kuar T (2015) Molecular genetic variation and structure of Southeast Asian crocodile (Tomistoma schlegelii): comparative potentials of SSRs versus ISSRs. Gene 571:107–116

    CAS  PubMed  Google Scholar 

  • Shirley MH, Austin JD (2017) Did Late Pleistocene climate change result in parallel genetic structure and demographic bottlenecks in sympatric Central African crocodiles, Mecistops and Osteolaemus? Mol Ecol 26:6463–6477

    PubMed  Google Scholar 

  • Subalusky AL, Garrick RC, Schable NA, Osborne J, Glenn TC (2012) Development and characterization of tetranucleotide microsatellite loci for the American alligator (Alligator mississippiensis). Conserv Genet Res 4:567–570

    Google Scholar 

  • Uller T, Olsson M (2008) Multiple paternity in reptiles: patterns and processes. Mol Ecol 17:2566–2580

    PubMed  Google Scholar 

  • Van Asch B, Versfeld WF, Hull KL, Leslie AJ, Matheus TI, Beytell PC, Du Preez P, Slabbert R, Rhode C (2019) Phylogeography, genetic diversity, and population structure of Nile crocodile populations at the fringes of the southern African distribution. PLoS ONE 14:e0226505

    PubMed  PubMed Central  Google Scholar 

  • Velo-Anton G, Godinho R, Campos JC, Brito JC (2014) Should I stay or should I go? Dispersal and population structure in small, isolated desert populations of West African Crocodiles. PLoS ONE 9:e94626

    PubMed  PubMed Central  Google Scholar 

  • Verdade LM, Zucoloto RB, Coutinho LL (2002) Microgeographic variation in Caiman latirostris. J Exp Zool Part B 294:387–396

    CAS  Google Scholar 

  • Villela PM, Coutinho LL, Pina CI, Verdade LM (2008) Macrogeographic genetic variation in broad-snouted caiman (Caiman latirostris). J Exp Zool Part A 309A:628–636

    CAS  Google Scholar 

  • Wang H, Yan P, Zhang S, Sun L, Ren M, Xue H, Jhang F, Wu R, Wu X (2017) Multiple paternity: a compensation mechanism of the Chinese alligator for inbreeding. Anim Reprod Sci 187:124–132

    CAS  PubMed  Google Scholar 

  • Weaver JP, Rodriguez D, Venegas-Anaya M, Cedeno-Vazquez JR, Forstner MRJ, Densmore LD III (2008) Genetic characterization of captive cuban crocodiles (Crocodylus rhombifer) and evidence of hybridization with the American crocodile (Crocodylus acutus). J Exp Zool Part A 309A:649–660

    CAS  Google Scholar 

  • Wu Q, Wu X, Glenn T (2012) Fourteen novel microsatellite loci in the Chinese alligator (Alligator sinensis) isolated via 454 pyrosequencing. Conserv Genet Res 4:729–732

    Google Scholar 

  • Yu DM, Peng JJ, Hu SJ, Gao SF, Fu ML, Hu HJ, Zou JJ (2011) Analysis of genetic variation and bottleneck in a captive population of Siamese crocodile using novel microsatellite loci. Conserv Genet Res 3:217–220

    Google Scholar 

  • Zhu H, Wu X, Xue H, Wei L, Hu Y (2009) Isolation of polymorphic microsatellite loci from the Chinese alligator (Alligator sinensis). Mol Ecol Res 9:892–894

    CAS  Google Scholar 

  • Zhu H, Wu X, Shao M, Wang C, Zhu J (2010) Selection of the captive-bred Chinese alligators (Alligator sinensis) for wild releasing based on microsatellite loci analysis. J Appl Anim Res 38:85–87

    Google Scholar 

  • Zucoloto RB, Porto CR (2015) Isolation of twenty-five new molecular microsatellite markers from Alligator mississippiensis (Alligatoridae, Alligatorinae) EST sequences using in silico Approach. Int J Appl Sci Technol 5:41–44

    Google Scholar 

  • Zucoloto RB, Verdade LM, Coutinho LL (2002) Microsatellite DNA library for Caiman latirostris. J Exp Zool Part B 294:346–351

    CAS  Google Scholar 

  • Zucoloto RB, Villela PMS, Verdade LM, Coutinho LL (2006) Cross-species microsatellite amplification in South American Caimans (Caiman spp and Paleosuchus palpebrosus). Genet Mol Biol 29:75–78

    CAS  Google Scholar 

  • Zucoloto RB, Verdade LM, Villela PMS, Regitano LCA, Coutinho LL (2009) Parentage test in broad-snouted caimans (Caiman latirostris, Crocodylidae) using microsatellite DNA. Genet Mol Biol 32:874–881

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank the Uttar Pradesh, Madhya Pradesh and Uttarakhand Forest Departments, India for providing necessary permissions and the two anonymous referees for comments that improved this manuscript. GV was supported by a Rufford Foundation small grants program (Project: 24452-2). DK received the DU-DST PURSE Grant Phase II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharma Deepika.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashistha, G., Deepika, S., Dhakate, P.M. et al. The effectiveness of microsatellite DNA as a genetic tool in crocodilian conservation. Conservation Genet Resour 12, 733–744 (2020). https://doi.org/10.1007/s12686-020-01164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-020-01164-6

Keywords

Navigation