Skip to main content

Advertisement

Log in

Biobanking in amphibian and reptilian conservation and management: opportunities and challenges

  • Technical Review
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Numerous species from the classes Amphibia and Reptilia are facing extinction as a result of habitat loss and increasing anthropogenic impact on the environment; to be more specific, 32% amphibian and 20% reptilian species are either threatened or endangered. The aim of this review is to highlight the status of biobanking as one of the many tools within conservation of amphibians and reptilians. Moreover, we discuss opportunities and challenges as well as provide recommendations for future conservation and management strategies for saving vulnerable species from the two taxa. Previous studies have reported production of viable offspring from cryopreserved amphibian germplasm and in reptiles from cooled spermatozoa. However, further research is needed to improve the efficiency of cryopreserved germplasms for future use in biobanks. More advanced research directions include culture of fibroblast cell lines coupled with appropriate pluripotent stem cells and advanced reproductive technologies as this will represent one further unique and invaluable resource in species conservation and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albl B, Haesner S, Braun-Reichhart C, Streckel E, Renner S, Seeliger F, Wolf E, Wanke R, Blutke A (2016) Tissue sampling guides for porcine biomedical models. Toxicol Pathol 44:414–420. https://doi.org/10.1177/0192623316631023

    Article  PubMed  Google Scholar 

  • Amphibian and Reptile Conservation (2011) Amphibian and Reptile Conservation. 2011. Due to the focus amphibians have received during the last couple of years, various global and local efforts are now working on coordinating conservation efforts such as establishing amphibian bi-obanks such as Amphibian ARK, IUCN SSC Amphibia

  • Amphibian ARK (2006) Amphibian ARK. 2006. https://www.amphibianark.org/

  • Amphibian Survival Alliance (2006) Amphibian survival alliance. 2006. https://www.amphibians.org/

  • Andrabi SMH, Maxwell WMC (2007) A review on reproductive biotechnologies for conservation of endangered mammalian species. Anim Reprod Sci 99:223–243. https://doi.org/10.1016/j.anireprosci.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RF, DeMaynadier PG (2009) Assessing threats to pool-breeding amphibian habitat in an urbanizing landscape. Biol Conserv 142:1628–1638. https://doi.org/10.1016/j.biocon.2009.02.039

    Article  Google Scholar 

  • Baust JM, Corwin WL, VanBuskirk R, Baust JG (2001) Biobanking in the 21st century. In: Karimi-Busheri F (ed) Revue Francaise de Psychanalyse. 1st edn, vol. 65. Springer, Switzerland

    Google Scholar 

  • Beesley SG, Costanzo JP, Lee RE (1998) Cryopreservation of spermatozoa from freeze-tolerant and intolerant anurans. Cryobiology 37:155–162. https://doi.org/10.1006/cryo.1998.2119

    Article  CAS  PubMed  Google Scholar 

  • Bellon MR, Dulloo E, Sardos J, Thormann I, Burdon JJ (2017) In situ conservation—harnessing natural and human-derived evolutionary forces to ensure future crop adaptation. Evol Appl 10:965–977. https://doi.org/10.1111/eva.12521

    Article  PubMed  PubMed Central  Google Scholar 

  • Bielanski A (2012) A review of the risk of contamination of semen and embryos during cryopreservation and measures to limit cross-contamination during banking to prevent disease transmission in et practices. Theriogenology 77:467–482. https://doi.org/10.1016/j.theriogenology.2011.07.043

    Article  CAS  PubMed  Google Scholar 

  • Bielanski A, Bergeron H, Lau PCK, Devenish JD (2003) Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 46:146–152. https://doi.org/10.1016/S0011-2240(03)00020-8

    Article  CAS  PubMed  Google Scholar 

  • Bielanski A, Vajta G (2009) Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. Hum Reprod 24:2457–2467. https://doi.org/10.1093/humrep/dep117

    Article  CAS  PubMed  Google Scholar 

  • Blaustein AR, Kiesecker JM (2002) Complexity in conservation : lessons from the global decline of amphibian populations. Ecol Lett 5:597–608

    Article  Google Scholar 

  • Böhm M, Collen B, Baillie JEM, Bowles P, Chanson J, Cox N, Hammerson G et al (2013) The conservation status of the world’s reptiles. Biol Conserv 157:372–385. https://doi.org/10.1016/j.biocon.2012.07.015

    Article  Google Scholar 

  • Browne RK, Clulow J, Mahony M, Clark A (1998) Successful recovery of motility and fertility of cryopreserved cane toad (Bufo marinus) sperm. Cryobiology 37:339–345. https://doi.org/10.1006/cryo.1998.2129

    Article  CAS  PubMed  Google Scholar 

  • Browne RK, Clulow J, Mahony M (2002a) The short-term storage and cryopreservation of spermatozoa from hylid and myobatrachid frogs. CryoLetters 23:129–136

    CAS  PubMed  Google Scholar 

  • Browne RK, Mahony M, Clulow J (2002b) A comparison of sucrose, saline, and saline with egg-yolk diluents on the cryopreservation of cane toad (Bufo marinus) sperm. Cryobiology 44:251–257. https://doi.org/10.1016/S0011-2240(02)00031-7

    Article  CAS  PubMed  Google Scholar 

  • Browne RK, Li H, Robertson H, Uteshev VK, Shishova NR, McGinnity D, Nofs S et al (2011) Reptile and amphibian conservation through gene banking and other reproduction technologies. Russ J Herpetol 18:165–174. https://doi.org/10.1046/j.1523-1739.2002.00530.x

    Article  Google Scholar 

  • Buchholz DR, Fu L, Shi YB (2004) Cryopreservation of xenopus transgenic lines. Mol Reprod Dev 67:65–69. https://doi.org/10.1002/mrd.20005

    Article  CAS  PubMed  Google Scholar 

  • Buck M, Hamilton C (2011) The Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. Reciel 20:47–61. https://doi.org/10.1111/j.1467-9388.2011.00703.x

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR, Barnosky AD, Garcia A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses:entering the sixth mass extinction. Sci Adv 1:e1400253

    Article  Google Scholar 

  • Chanson J, Hoffmann M, Cox N, Stuart S (2008) The state of the worlds amphibians. In: Stuart SN, Hoffmann M, Chanson JS Cox NA, (eds) Threatened amphibians of the world. Barcelona: Lynx Edicions, pp 15–38

  • Charlton SJ, Nielsen MB, Pedersen CR, Thomsen L, Kristjansen MP, Sørensen TB, Pertoldi C, Strand J (2018) Strong heterogeneity in advances in cryopreservation techniques in the mammalian orders. Zool Sci 35:1–22. https://doi.org/10.2108/zs170037

    Article  PubMed  Google Scholar 

  • Chemnick LG, Houck ML, Ryder OA (2009) Banking of genetic resources: the frozen zoo® at the San Diego zoo. In: Amato G, Desalle R, Rosenblum HC, Ryder OA (eds) Conservation genetics in the age of genomics. Columbio University Press, New York, pp 124–130

    Google Scholar 

  • Clarke AG (2009) The frozen ark project: the role of zoos and aquariums in preserving the genetic material from threatened animals. Int Zoo Yearbook 43:222–230. https://doi.org/10.1111/j.1748-1090.2008.00074.x

    Article  Google Scholar 

  • Clulow J, Clulow S (2016) Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing the ARTs up to speed. Reprod Fertil Dev 28:1116–1132.

    Article  Google Scholar 

  • Comizzoli P, Holt WV (2016) Implications of the Nagoya protocol for genome resource banks composed of biomaterials from rare and endangered species. Reprod Fertil Dev 28:1145–1151

    Article  CAS  Google Scholar 

  • Constanzo JP, Mugnano JA, Wehrheim HM, Lee RE Jr (1998) Osmotic and freezing tolerance in spermatozoa of freeze-tolerant and -intolerant frogs. Am Physiol Soc 275:R713–R719

    Google Scholar 

  • Costa M, Bruford MW (2018) The Frozen Ark Project—Biobanking endangered animal samples for conservation and research. Inside Ecol Mag 2: 16–25. https://insideecology.com/2018/01/12/the-frozen-ark-project-biobanking-endangered-animal-samples-for-conservation-and-research/.

  • Costanzo JP, Mugnano JA, Wehrheim HM, Lee RE (1998) Osmotic and freezing tolerance in spermatozoa of freeze tolerant and intolerant frogs. Am J Physiol Regul Integr Comp Physiol 44:R713–R719. https://doi.org/10.1099/vir.0.82537-0

    Article  CAS  Google Scholar 

  • Cox NA, Temple HJ (2009) The European context. European Red List of Reptiles, 1st edn. Cambridge Publishers, Luxemborg, pp 1–19

    Google Scholar 

  • CryoArks (2018) CryoArks. 2018. https://www.cryoarks.org/.

  • Derakhstan Z, Nokhbatolfoghahai M, Zahiri S (2017) Cryopreservation of Bufotes viridis embryos by vitrification. Cryobiology 75:60–67. https://doi.org/10.1016/j.cryobiol.2017.02.003

    Article  CAS  Google Scholar 

  • Depeiges A, Dacheux JL (1985) Acquisition of sperm motility and its maintenance storage in the lizard, Lacerta vivipara. J Reprod Fertil 74:23–27

    Article  CAS  Google Scholar 

  • Ezaz T, O’Meally D, Quinn AE, Sarre SD, Georges A, Graves JAM (2009) A simple non-invasive protocol to establish primary cell lines from tail and toe explants for cytogenetic studies in Australian dragon lizards (Squamata: Agamidae). Cytotechnology 58:135–139. https://doi.org/10.1007/s10616-009-9182-3

    Article  PubMed Central  Google Scholar 

  • Fahrig BM, Mitchell MA, Eilts BE, Paccamonti DL (2007) Characterization and cooled storage of semen from corn snakes (Elaphe guttata). J Zoo Wildl Med 38:7–12. https://doi.org/10.1638/05-098.1

    Article  PubMed  Google Scholar 

  • FAO (2015) The second report on the state of the world’s animal genetic resources for food and agriculture. In: Scherf BD, Pilling D (eds) FAO commission on genetic resources for food and agriculture assessments. Rome. http://www.fao.org/3/a-i4787e/index.html

  • Figiel CR (2013) Cryopreservation of sperm from the Axolotl Ambystoma mexicanum:implications for conservation. Herpetol Conserv Biol 8:748–755

    Google Scholar 

  • Gibbons JW, Scott DE, Travis RJ, Kurt AB, Tuberville TD, Metts BS, Greene JL et al (2000) The global decline of reptiles, Déjà Vu amphibians. Bioscience 50:653–666. https://doi.org/10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2

    Article  Google Scholar 

  • Gist D, Turner T, Congdon J (2000) Chemical and thermal effects on the viability and motility of spermatozoa from the turtle epididymis. Reproduction 119:271–277. https://doi.org/10.1530/jrf.0.1190271

    Article  CAS  Google Scholar 

  • Groeneveld LF, Gregusson S, Guldbrandtsen B, Hiemstra SJ, Hveem K, Kantanen J, Lohi H, Stroemstedt L, Berg P (2016) Domesticated animal biobanking: land of opportunity. PLoS Biol 14:1–6. https://doi.org/10.1371/journal.pbio.1002523

    Article  Google Scholar 

  • Grout BW, Morris GJ (2009) Contaminated liquid nitrogen vapour as a risk factor in pathogen transfer. Theriogenology 71:1079–1082. https://doi.org/10.1016/j.theriogenology.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  • Hassapakis C, Clark HO (2017) Progress in biobanking amphibian species worldwide for conservation. Amphib Reptile Conserv 25:119

    Google Scholar 

  • Hermes R, Saragusty J, Göritz F, Bartels P, Potier R, Baker B, Streich WJ, Hildebrandt TB (2013) Freezing African elephant semen as a new population management tool. PLoS ONE 8:1–8. https://doi.org/10.1371/journal.pone.0057616

    Article  CAS  Google Scholar 

  • Hewitt R, Watson P (2013) Defining biobank. Biopreserv Biobanking 11:13–21. https://doi.org/10.1089/bio.2013.0042

    Article  Google Scholar 

  • Hildebrandt TB, Hermes R, Saragusty J, Potier R, Schwammer HM, Balfanz F, Vielgrader H, Baker B, Bartels P, Göritz F (2012) Enriching the captive elephant population genetic pool through artificial insemination with frozen-thawed semen collected in the wild. Theriogenology 78:1398–1404. https://doi.org/10.1016/j.theriogenology.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  • Hopkins B, Herr C (2007) Cryopreservation of frog (Rana pipiens) sperm cells collected by non-lethal methods. Reprod Fertil Dev 20:120

    Article  Google Scholar 

  • Howard JG, Lynch C, Santymire RM, Marinari PE, Wildt DE (2015) Recovery of gene diversity using long-term cryopreserved spermatozoa and artificial insemination in the endangered black-footed ferret. Anim Conserv 19:100–111. https://doi.org/10.1111/acv.12229

    Article  Google Scholar 

  • IUCN (2017) The IUCN red list of threatened species. International Union for the Conservation of Nature 2017. 2017

  • IUCN (2019a) IUCN Red List. 2019. https://www.iucnredlist.org/search?query=reptiles&searchType=species

  • IUCN (2019b) The IUCN red list of threatened species. Table 1a: number of species evaluated in relation to the overall number of described species, and numbers of threatened species by major groups of organisms. 2019

  • IUCN SSC Amphibian Specialist Group (2005) IUCN SSC amphibian specialist group. 2005. https://www.iucn-amphibians.org/

  • Johnston SD, Lever J, McLeod R, Qualischefski E, Brabazon R, Walton S, Collins SN (2014) Extension, osmotic tolerance and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Aquaculture 426–427:213–221

    Article  Google Scholar 

  • Johnston SD, Lever J, McLeod R, Oishi M, Qualischefski E, Omanga C, Leitner M et al (2014) Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus). Aquaculture 422–423:25–35. https://doi.org/10.1016/j.aquaculture.2013.11.002

    Article  Google Scholar 

  • Kaurova SA, Chekurova NR, Melnikova EV, Uteshev VK, Gakova EN (1996) Cryopreservation of frog Rana temporaria sperm without loss of fertilizing capacity. In genetic resource conservation. Proc. of XIV Working Meeting, May 13–15, 1996, 106–8.

  • Kaurova SA, Uteshev VA, Gakhova EN (1997) Cryopreservation of testis of frog Rana temporaria. Transfusionsmed 24:78–79

    Google Scholar 

  • Kaurova SA, Uteshev VA, Gakhova EN (2008) Cryopreservation of testicular sperm of common toad Bufo bufo. Biofiz Zhiv Kletki 9:62–63

    Google Scholar 

  • Kleinhans FW, Guenther JF, Roberts DM, Mazur P (2006) Analysis of intracellular ice nucleation in xenopus oocytes by differential scanning calorimetry. Cryobiology 52:128–138. https://doi.org/10.1016/j.cryobiol.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  • Koepfli K, Paten B, Brien SJO (2015) The genome 10K project:a way forward. Annu Rev Anim Biosci. https://doi.org/10.1146/annurev-animal-090414-014900

    Article  PubMed  PubMed Central  Google Scholar 

  • Korody ML, Pivaroff C, Nguyen TD, Peterson SE, Ryder OA, Loring JF (2017) Four new induced pluripotent stem cell lines produced from northern white rhinoceros with non-integrating reprogramming factors. BioRxiv. https://doi.org/10.1101/202499

    Article  Google Scholar 

  • Kouba AJ, Lloyd RE, Houck ML, Silla AJ, Calatayud N, Trudeau VL, Clulow J et al (2013) Emerging trends for biobanking amphibian genetic resources: the hope, reality and challenges for the next decade. Biol Conserv 164:10–21. https://doi.org/10.1016/j.biocon.2013.03.010

    Article  Google Scholar 

  • LanghorneCJ CNE, Kouba AJ, Feugang JM, Vance CK, Willard ST (2013) Cryoconservation: successful sperm cryopreservation and develop-mental outcomes using endangered North American amphibians. Cryobiology 67:405. https://doi.org/10.1016/j.cryobiol.2013.09.032

    Article  Google Scholar 

  • Langlada FG, Santos S, Ferreira ILL (1994) Techniques of artificial insemination in Crotalus durissus terrificus (Viperidae-Crotalinae). Braz J Vet Res Anim Sci 31:141–144.

    Article  Google Scholar 

  • Larsen RE, Cardeilhac PT, Lane T (1984) Semen extenders for artificial insemination in the American alligator. Aquaculture 42:141–149. https://doi.org/10.1016/0044-8486(84)90361-2

    Article  CAS  Google Scholar 

  • Larsen RE, Cardeilhac PT (1996) Collection of spermatozoa from leucistic (White ) alligators. Fed Proc 13:90–93

    Google Scholar 

  • Larsen RE, Cardeilhac PT, DeSena RR, Puckett HM (1982) Semen collection and artificial insemination in the American alligator (Alligator mississippiensis). In: Proceedings 13th annual conference workshop, International association of aquatic animal medicine. Baltimore, MD, p. 45 [Abstract]

  • Larsen RE, Verdade LM, Meirelles CF, Lavorenti A (1992) Broad-nosed caiman (Caiman latirostris) semen collection, evaluation, and maintenance in diluents. In: Proceedings: paper presented at 11th working meeting crocodile specialist group. Victoria Falls, Zimbabwe, pp 270–276

  • Lawson B, Clulow S, Mahony MJ, Clulow J (2013) Towards gene banking amphibian maternal germ lines: short-term incubation, cryoprotectant tolerance and cryopreservation of embryonic cells of the frog Limnodynastes peronii. PLoS ONE 8:e60760. https://doi.org/10.1371/journal.pone.0060760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon-Quinto T, Simon MA, Cadenas R, Jones J, Martinez-Hernandez FJ, Moreno JM, Vargas A, Martinez F, Soria B (2009) Developing biological resource banks as a supporting tool for wildlife reproduction and conservation. The Iberian lynx bank as a model for other endangered species. Anim Reprod Sci 112:347–361. https://doi.org/10.1016/j.anireprosci.2008.05.070

    Article  PubMed  Google Scholar 

  • Mansell JL, Jacobson ER, Gaskin JM (1989) Initiation and ultrastructure of a reptilian fibroblast cell line obtained from Cutaneous fibropapillomas of the green turtle, Chelonia mydas. Vitro Cell Dev Biol 25:9–11

    Article  Google Scholar 

  • Mansour N, Lahnsteiner F, Patzner RA (2009) Optimization of the cryopreservation of African clawed frog (Xenopus laevis) sperm. Theriogenology 72:1221–1228. https://doi.org/10.1016/j.theriogenology.2009.07.013

    Article  CAS  PubMed  Google Scholar 

  • Mansour N, Lahnsteiner F, Patzner RA (2010) Motility and cryopreservation of spermatozoa of European common frog, Rana temporaria. Theriogenology 74:724–732. https://doi.org/10.1016/j.theriogenology.2010.03.025

    Article  CAS  PubMed  Google Scholar 

  • Marcec R, Langhorne C, Vance C, Kouba A, Willard S (2014) Cryopreservation of spermic milt in the model species Ambystoma tigrinum (Tiger salamander) for application in endangered salamanders. Cryobiology 69:515. https://doi.org/10.1016/j.cryobiol.2014.09.342

    Article  Google Scholar 

  • Marcec M (2016) Development of assisted reproductive technologies for endangered North American Salamanders. PhD Thesis.

  • Mattson KJ, Vries AD, McGuire SM, Krebs J, Louis EE, Loskutoff NM (2007) Successful artificial insemination in the corn snake, Elaphe gutatta, using fresh and cooled semen. Zoo Biol 26:363–369. https://doi.org/10.1002/zoo

    Article  PubMed  Google Scholar 

  • Michael SF, Jones C (2004) Cryopreservation of spermatozoa of the terrestrial Puerto Rican frog, Eleutherodactylus coqui. Cryobiology 48:90–94. https://doi.org/10.1016/j.cryobiol.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  • Moshiri M, Todehdehghan F, Shiravi A (2014) Study of sperm reproductive parameters in mature zanjani viper. Cell J 16:111–116

    PubMed  PubMed Central  Google Scholar 

  • Mozafari SZ, Shiravi A, Todehdehghan F (2012) Evaluation of reproductive parameters of vas deferens sperms in Caucasian snake (Gloydius halys caucasicus). Vet Res Forum 3:119–123

    PubMed  PubMed Central  Google Scholar 

  • Mugnano JA, Costanzo JP, Beesley SG, Lee RE (1998) Evaluation of glycerol and dimethyl sulfoxide for the cryopreservation of spermatozoa from the wood frog (Rana sylvatica). Cryo-Letters 19:249–254

    CAS  Google Scholar 

  • Nashville Zoo Hellbender Conservation (2019) Hellbender conservation 2019. https://www.nashvillezoo.org/hellbender-conservation

  • Nijman V, Shepard CR, Mumpuni M, Sanders K (2012) Over-exploitation and illegal trade of reptiles in Indonesia. J Herpetol 22:83–89

    Google Scholar 

  • O’Regan SM, Palen WJ, Anderson SC (2014) Climate warming mediates negative impacts of rapid pond drying for three amphibian species. Ecology 95:845–855. https://doi.org/10.1890/13-0916.1

    Article  PubMed  Google Scholar 

  • Olson DH, Aanensen DM, Ronnenberg K, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8:e56802. https://doi.org/10.1371/journal.pone.0056802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ombelet W, Van Robays J (2015) Artificial insemination history: hurdles and milestones. Facts Views Vis Obgyn 7:137–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearl E, Morrow S, Noble A, Lerebours A, Horb M, Guille M (2017) An optimized method for cryogenic storage of xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 92:149–155. https://doi.org/10.1016/j.theriogenology.2017.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Pegg DE (2015) Principles of cryopreservation, 2nd edn. Springer, New York

    Google Scholar 

  • Peng L, Xiao Y, Liu Y (2011) Effect of cryopreservation and short-term storage of Chinese giant salamander sperm. Acta Hydrobiol Sin 35:325–331

    Article  Google Scholar 

  • Proano B, Perez OD (2017). In vitro fertilizations with cryopreserved sperm of Rhinella marina (Anura: Bufonidae) in Ecuador. Amphib Reptile Conserv 11: 1–6

  • Quinn H, Blasedel T, Carrol C, Platz JR (1989) Succesful artificial insemination in the checkered garter snake Thamnophis marcianus. Int Zoo Yearbook 28:177–183

    Article  Google Scholar 

  • San Diego Frozen Zoo (2018) Frozen Zoo. 2018. https://institute.sandiegozoo.org/resources/frozen-zoo.

  • San Diego Zoo Institute for Conservation Research. Frozen Zoo® (2018) San Diego Zoo Institute for Conservation Research. Frozen Zoo®. 2018

  • Saragusty J, Diecke S, Drukker M, Durrant B, Ben-Nun IF, Galli C, Göritz F et al (2016) Rewinding the process of mammalian extinction. Zoo Biol 35:280–292. https://doi.org/10.1002/zoo.21284

    Article  PubMed  Google Scholar 

  • SaragustyJ HTB, Behr B, Knieriem A, Kruse J, Hermes R (2009) Successful cryopreservation of Asian elephant (Elephas maximus) spermatozoa. Anim Reprod Sci 115:255–266. https://doi.org/10.1016/j.anireprosci.2008.11.010

    Article  CAS  Google Scholar 

  • Sargent MG, Mohun TJ (2005) Cryopreservation of sperm of Xenopus laevis and Xenopus tropicalis. Genesis 41:41–46. https://doi.org/10.1002/gene.20092

    Article  PubMed  Google Scholar 

  • Scheltinga DM, Jamieson BGM, Espinoza RE, Orrell KS (2001) Descriptions of the mature spermatozoa of the lizards Crotaphytus bicinctores, Gambelia wislizenii (Crotaphytidae), and Anolis carolinensis (Polychrotidae) (Reptilia, Squamata, Iguania). J Morphol 247:160–171. https://doi.org/10.1002/1097-4687(200102)247

    Article  CAS  PubMed  Google Scholar 

  • Shishova NR, Uteshev VK, Kaurova SA, Browne RK, Gakhova EN (2011) Cryopreservation of hormonally induced sperm for the conservation of threatened amphibians with Rana temporaria as a model research species. Theriogenology 75:220–232. https://doi.org/10.1016/j.theriogenology.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  • Silla AJ (2011) Effect of priming injections of luteinizing hormone-releasing hormone on spermiation and ovulation in gϋnther ’ s toadlet, Pseudophryne guentheri. Reprod Biol Endocrinol 9:1–9

    Article  Google Scholar 

  • Silversides FG, Purdy PH, Blackburn HD (2012) Comparative costs of programmes to conserve chicken genetic variation based on maintaining living populations or storing cryopreserved material. Br Poult Sci 53:599–607

    Article  CAS  Google Scholar 

  • Sirinarumitr K, Patthong Y, Jaimjaturong P, Woonwong Y, Petchsamut W, Limpasuntisin P, Man-awatthana S et al. (2010). Extender for sperm dilution in olive ridley turtle (Lepidochelys olivacea) and hawksbill turtle (Eretmochelys imbricata) semen. In Proceedings of the 5th International Symposium on SEASTAR 000 and Asian Bio-Logging Science (The 9th SEASTAR2000 Workshop), 7–10.

  • Strauß S, Ziegler T, Allmeling C, Reimers K, Frank-klein N, Seuntjens R, Vogt PM (2013) In vitro culture of skin cells from biopsies from the critically endangered Chinese giant salamander, Andrias davidianus (Blanchard, 1871) (Amphibia, Caudata, Cryptobranchidae). Amphib Reptile Conserv 5:51–63

    Google Scholar 

  • The Frozen Ark (2010) The frozen ark. 2010. https://www.frozenark.org.

  • Tanasanti M, Sujaritthanyatrakul C, Dhanarun K, Sahatrakul K, Sakorncharoun P, Manawatthana S, Sanyathitiseree P, Sirinarumittr K (2009). Electroejaculation and semen evaluation in olive ridley turtle (Lepidochelys olivacea) and hawksbill turtle (Eretmochelys imbricata) in Thailand. In 4th International Symposium on Seastar 2000 and Asian Bio-Logging Science. https://doi.org/10.1002/adsc.201401081.

  • Todd BD, Wilson JD, Gibbons JW (2010) The global status of reptiles and causes of their decline. In: Sparling DW, Linder G, Bishop CA, Krest S (eds) Ecotoxicology of amphibians and reptiles, 2nd edn. CRC Press, New York, pp 1–13

    Google Scholar 

  • TrudeauVL SGM, Natale GS, Pauli B, Wignall J, Jackman P, Doe K, Schueler FW (2010) Hormonal induction of spawning in 4 species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist. Reprod Biol Endocrinol 8:2–10

    Article  Google Scholar 

  • Tourmente M, Cardozo GA, Guidobaldi HA, Giojalas LC, Bertona M, Chiaraviglio M (2007) Sperm motility parameters to evaluate the seminal quality of boa constrictor occidentalis, a threatened snake species. Res Vet Sci 82:93–98. https://doi.org/10.1016/j.rvsc.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  • Unger S, Mathis A, Wilkinson R (2013) A comparison of sperm health in declining and stable populations of hellbenders (Cryptobranchus alleganiensis alleganiensis and C.a. bishopi). Am Midland Nat 170:382–392. https://doi.org/10.1674/0003-0031-170.2.382

    Article  Google Scholar 

  • Upton R, Clulow S, Mahony MJ, Clulow J (2018) Generation of a sexually mature individual of the Eastern dwarf tree frog, Litoria fallax, from cryopreserved testicular macerates: proof of capacity of cryopreserved sperm derived offspring to complete development. Conserv Physiol 6:1–5. https://doi.org/10.1093/conphys/coy043

    Article  Google Scholar 

  • Uteshev VK, Mel’nikova EV, Kaurova SA, Nikitin VA, Gakova EN, Karnaukhov VN (2013) Collection and cryopreservation of hormonally induced sperm of pool frog (Pelophylax lessonae). Russ J Herpetol 20:105–109

    Google Scholar 

  • Uteshev VK, Shishova NV, Kaurova SA, Manokhin AA, Gakhova EN (2002) Fluorescent analysis of cryopreserved totipotent cells of amphibian embryos. Biofizika 47:539–545

    CAS  PubMed  Google Scholar 

  • Waltzer C (2019) International sample movement: overview of convention on international trade in endangered species of wild fauna and flora and selected national regulations. In: Miller R, Lamberski N, Calle P (eds) Fowlers zoon and wild animal medicine. Elsevier, Missouri, pp 16–21

    Google Scholar 

  • Wood F, Platz C, Critchley K, Wood J (1982) Semen collection by electroejaculation of the green turtle, Chelonia mydas. Br J Herpetol 6:200–202

    Google Scholar 

  • WWF (2018) Living planet Report—2018: aiming higher. Gland, Switzerland

    Google Scholar 

  • Xiang Y, Gao Q, Su W, Zeng L (2012) Establishment, characterization and immortalization of a fibroblast cell line from the Chinese red belly toad Bombina maxima skin. Cytotechnology 64:95–105. https://doi.org/10.1007/s10616-011-9399-9

    Article  CAS  PubMed  Google Scholar 

  • Young C, Ravida N, Curtis M, Mazzotti F, Durrant B (2017) Development of a sperm cryopreservation protocol for the argentine black and white tegu (Tupinambis merianae). Theriogenology 87:55–63. https://doi.org/10.1016/j.theriogenology.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  • Zacariotti RL, Grego KF, Fernanden W, Sant’Anna SS, Guimarães MADB (2007) Collection and evaluation in free-ranging brazilian rattlesnakes (Crotalus durissus terrificus). Zoo Biol 26:155–160

    Article  Google Scholar 

  • Zimkus BM, Hassapakis CL, Houck ML (2018) Integrating current methods for the preservation of amphibian genetic resources and viable tissues to achieve best practices for species conservation. Amphib Reptile Conserv 12:e165

    Google Scholar 

  • Zimmerman DM, Mitchell MA, Perry BH (2013) Collection and characterization of semen from green iguanas (Iguana Iguana). Am J Vet Res 74:1536–1541

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JS wrote the paper with contributions by HT, MRB, JBJ, CM, TBN, MBS, IMS, TE, SP, HC and CP. All authors contributed to analysis, interpretations and conclusions.

Corresponding author

Correspondence to Julie Strand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strand, J., Thomsen, H., Jensen, J.B. et al. Biobanking in amphibian and reptilian conservation and management: opportunities and challenges. Conservation Genet Resour 12, 709–725 (2020). https://doi.org/10.1007/s12686-020-01142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-020-01142-y

Keywords

Navigation