An environmental DNA assay for the detection of the regionally endangered freshwater fish Alburnoides bipunctatus in Germany

  • M. RiazEmail author
  • C. Wittwer
  • C. Nowak
  • B. Cocchiararo
Technical Note


The freshwater fish Alburnoides bipunctatus is a widespread species that suffered from river straightening and water pollution across Europe. The species is difficult to monitor, which hampers evaluation of current reintroduction action. We thus developed an environmental DNA (eDNA) based assay to allow for monitoring of A. bipunctatus in central Germany. A 63 bp cytochrome b-based mitochondrial marker proved highly sensitive and specific for A. bipunctatus. The assay was tested in the laboratory using different concentrations of reference samples from various local fish species. A real-life test using water samples from three reintroduction sites was used to validate the applicability of the assay.


Alburnoides bipunctatus qPCR eDNA Reintroduction Biomonitoring 



We acknowledge the upper fisheries administration of the State of Hessen, namely the Regierungspräsidium Kassel (Christoph Laczny), for financial and logistical support. We would like to thank the Rhön Biosphere Reserve team in Hessen for initiating this project and in particular Joachim Walter for the helpful guidance to the sampling sites and assistance in eDNA sampling. We are thankful to Wolfgang Silkenat and Matthias Schäffner (Fischereifachberatung Bezirk Unterfranken), who provided diverse fish tissues for the development of the eDNA assay. We kindly acknowledge Dr. Harald Groß for the provision of A. bipunctatus individuals for initial eDNA tests. We are thankful to Fiona Paul and Lina Wolf for their field and laboratory assistance during the project.


  1. Bálint M, Nowak C, Márton O et al (2017) Twenty-five species of frogs in a liter of water: eDNA survey for exploring tropical frog diversity. bioRxiv preprint.
  2. Berdal KG, Bøydler C, Tengs T, Holst-Jensen A (2008) A statistical approach for evaluation of PCR results to improve the practical limit of quantification (LOQ) of GMO analyses (SIMQUANT). Eur Food Res Technol 227:1149–1157. CrossRefGoogle Scholar
  3. Biggs J, Ewald N, Valentini A et al (2015) Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol Conserv 183:19–28. CrossRefGoogle Scholar
  4. Bobbe T (2011) Erste Erfahrungen bei der Wiederansiedlung des Schneiders in Südhessen Inhalt.Google Scholar
  5. Bobbe T (2015) Wiederansiedlung des Schneiders Alburnoides bipunctatus (BLOCH 1782) in Südhessen 2009–2015Google Scholar
  6. Bobbe T (2016) Wiederansiedlung des Schneiders Alburnoides bipunctatus (BLOCH 1782) in Südhessen 2009–2015Google Scholar
  7. Carim KJ, Dysthe JCS, Young MK et al (2016) An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America. Conserv Genet Resour 8:197–199. CrossRefGoogle Scholar
  8. Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Goldberg CS, Pilliod DS, Arkle RS, Waits LP (2011) Molecular detection of vertebrates in stream water: a demonstration using rocky mountain tailed frogs and Idaho giant salamanders. PLoS ONE CrossRefPubMedPubMedCentralGoogle Scholar
  10. Goldberg CS, Turner CR, Deiner K et al (2016) Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol 7:1299–1307. CrossRefGoogle Scholar
  11. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  12. Harper KJ, Anucha NP, Turnbull JF et al (2018) Searching for a signal: environmental DNA (eDNA) for the detection of invasive signal crayfish, Pacifastacus leniusculus (Dana, 1852). Manag Biol Invasions 9Google Scholar
  13. Lukas JAY, Jourdan J, Kalinkat G et al (2017) On the occurrence of three non-native cichlid species including the first record of a feral population of Pelmatolapia (Tilapia) mariae (Boulenger, 1899) in Europe. R Soc Open Sci 4:170160. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Rothe U (2002) Kurzmitteilung—short communication. Mit Mus Natkd Berl Zool R 78:183–185Google Scholar
  15. Sigsgaard EE, Carl H, Møller PR, Thomsen PF (2015) Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol Conserv 183:46–52. CrossRefGoogle Scholar
  16. Thomsen PF, Kielgast J, Iversen LL et al (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573. CrossRefPubMedGoogle Scholar
  17. Wilcox TM, McKelvey KS, Young MK et al (2013) Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS ONE CrossRefPubMedPubMedCentralGoogle Scholar
  18. Wittwer C, Stoll S, Strand D et al (2018) eDNA-based crayfish plague monitoring is superior to conventional trap-based assessments in year-round detection probability. Hydrobiologia 807:87–97. CrossRefGoogle Scholar
  19. Yamamoto S, Minami K, Fukaya K et al (2016) Environmental DNA as a “snapshot” of fish distribution: a case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan. PLoS ONE 11:1–18. CrossRefGoogle Scholar
  20. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
  2. 2.Faculty of Biological Sciences, Institute for Ecology, Evolution and DiversityGoethe UniversityFrankfurt am MainGermany
  3. 3.LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG)Frankfurt am MainGermany

Personalised recommendations