Characterization of the complete chloroplast genome of longstalk almond (Prunus pedunculata (Pall.) Maxim.), an important sand-fixation shrub plant endemic to northern China

  • Wei Wang
  • Hui-Ling Wang
  • Xun-Ze Xiao
  • Xin-Qiao Xu
Technical Note


The Prunus pedunculata is a precious plant native to the north of China. In this study, its complete chloroplast genome was determined through Illumina sequencing method. The circular genome was 157,873 bp in length and contained two inverted repeat regions of 26,385 bp each. The complete chloroplast genome of P. pedunculata encoded 131 genes including 87 protein-coding genes, 36 tRNA genes and 8 rRNA genes. The overall GC content of P. pedunculata complete chloroplast genome is 36.78%. Phylogenetic analysis showed that P. pedunculata is closely related to the mountain cherry (Prunus tomentosa).


Prunus pedunculata Longstalk almond Chloroplast genome Illumina sequencing Phylogenetic analysis 



This work was supported by the National Natural Science Foundation of China (41501059), the Fundamental Research Funds for the Central Non-profit Research Institution of CAF (CAFYBB2016QB004, CAFYBB2017ZA004-7) and the National Science and Technology Program for Public Wellbeing (2012GS610203).

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.


  1. Chau CF, Wu SH (2006) The development of regulations of Chinese herbal medicines for both medicinal and food uses. Trends Food Sci Technol 17(6):313–323CrossRefGoogle Scholar
  2. Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15Google Scholar
  3. Feng Y, Liu T, Wang XY, Li BB, Liang CL, Cai YL (2017) Characterization of the complete chloroplast genome of the Chinese cherry Prunus pseudocerasus (Rosaceae). Conserv Genet Resour. Google Scholar
  4. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780CrossRefPubMedPubMedCentralGoogle Scholar
  5. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575-W581CrossRefPubMedCentralGoogle Scholar
  6. Luan A, Gao A, He J, Bi G, He Y (2017) Characterization of the complete chloroplast genome of black cherry (Prunus serotina Ehrh.). Conserv Genet Resour. Google Scholar
  7. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J (2015) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 4(1):1CrossRefGoogle Scholar
  8. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  9. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20(17):3252–3255CrossRefPubMedGoogle Scholar
  10. Xu X, Wen J, Wang W, Zheng W (2017) The complete chloroplast genome of the threatened Prunus cerasoides, a rare winter blooming cherry in the Himalayan region. Conserv Genet Resour. Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Silviculture of the State Forestry Administration, The Institute of ForestryThe Chinese Academy of ForestryBeijingChina
  2. 2.Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina

Personalised recommendations