Skip to main content

Advertisement

Log in

Single nucleotide polymorphism markers for assessing potential maternal population structure in European eel (Anguilla anguilla)

  • Methods and Resources Article
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

The European eel is considered to be panmictic. However, this view has been challenged by results based on maternally inherited mitochondrial DNA that suggest female philopatric behavior. Resolving this issue is of high importance, as it is the prerequisite for efficient conservation efforts. We developed a total of 91 SNPs adequate for re-testing panmixia in European eel (Anguilla anguilla), including 24 mitochondrial and 67 nuclear markers. We demonstrate their utility for genotyping eel larvae caught at the spawning grounds in the Sargasso sea, which could be used to test female philopatric behavior in European eel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Als TD, Hansen MM, Maes GE et al (2011) All roads lead to home: panmixia of European eel in the Sargasso Sea. Mol Ecol 20:1333–1346

    Article  Google Scholar 

  • Åström M, Dekker W (2007) When will the eel recover? A full life-cycle model. Ices J Mar Sci 64:1491–1498

    Article  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  Google Scholar 

  • Baltazar-Soares M, Biastoch A, Harrod C et al (2014) Recruitment collapse and population structure of the European eel shaped by local ocean current dynamics. Curr Biol 24:104–108

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • BioMatters (2012) Geneious version 5.4.6. Available at http://www.geneious.com

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  CAS  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    Article  CAS  Google Scholar 

  • Henkel CV, Dirks RP, de Wijze DL et al (2012) First draft genome sequence of the Japanese eel, Anguilla japonica. Gene 511:195–201

    Article  CAS  Google Scholar 

  • Jacobsen MW, Pujolar JM, Gilbert MTP et al (2014) Speciation and demographic history of Atlantic eels (Anguilla anguilla and A. rostrata) revealed by mitogenome sequencing. Heredity 113:432–442

    Article  CAS  Google Scholar 

  • Jacobsen MW, Smedegaard L, Sorensen SR et al (2017) Assessing pre- and post-zygotic barriers between North Atlantic eels (Anguilla anguilla and A. rostrata). Heredity 118:266–275

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Minegishi Y, Aoyama J, Inoue JG et al (2005) Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences. Mol Phylogenet Evol 34:134–146

    Article  CAS  Google Scholar 

  • Moritz C (1994) Defining evolutionarily significant units for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  Google Scholar 

  • Pujolar JM, Jacobsen MW, Als TD et al (2014) Genome-wide single-generation signatures of local selection in the panmictic European eel. Mol Ecol 23:2514–2528

    Article  CAS  Google Scholar 

  • Rousset F (2008) GENEPOP ’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Tsukamoto K, Chow S, Otake T et al (2011) Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat Commun 2:179

    Article  Google Scholar 

Download references

Acknowledgements

We thank EU Interreg (Øresund-Kattegat-Skagerrak) funds (MARGEN) and the Danish Council for Independent Research, Natural Sciences (Grant No. 7014-00167 to MMH) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus W. Jacobsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 89 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobsen, M.W., Pujolar, J.M., Pedersen, L. et al. Single nucleotide polymorphism markers for assessing potential maternal population structure in European eel (Anguilla anguilla). Conservation Genet Resour 10, 907–909 (2018). https://doi.org/10.1007/s12686-017-0917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-017-0917-8

Keywords