Conservation Genetics Resources

, Volume 10, Issue 2, pp 157–160 | Cite as

The complete mitochondrial genome of Carabus (Damaster) lafossei (Coleoptera: Carabidae)

  • Naiyi Liu
  • Shuyan Wang
  • Xiaojun Yang
  • Jie Song
  • Jing Wu
  • Jie Fang
Technical Note


Carabus (Damaster) lafossei: (Coleoptera, Carabidae) is an endangered beetle endemic to China; it was listed as National Second Class Protected Animal in China. Here, we provide the first report of the complete mitochondrial genome sequence of Carabus lafossei. The sequence contains 16,793 bp, with 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and 1 control region. All of the protein-coding genes use the typical ATN as the initiation codon, except for ND1, which uses TTG. Only COX2 employs a single T as a termination signal, while others have the typical termination codons (TAA or TAG). The average A+T content of the mitochondrial genome is 79.7%. Phylogenetic analyses revealed that C. lafossei has a closer relationship with Carabus mirabilissimus than with other Carabus species. These molecular biology data provide a scientific basis for the protection and sustainable utilization of this key endangered Carabid beetle.


Carabus lafossei Carabid beetle Mitochondrial genome Conservation 



This study was partly sponsored by the Natural Science Foundation of Anhui (Grant No. 1608085MC76), the Specialized Research Fund of Higher Education of Anhui (Grant No. KJ2015A017) and the Graduate student scientific research innovation projects of Anhui university (Grant No. yqh100088). The authors report no conflicts of interest.


  1. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319. doi: 10.1016/j.ympev.2012.08.023 CrossRefPubMedGoogle Scholar
  2. Deuve T (2013) Cychrus, Calosoma Et Carabus De Chine. Pensoft Publishing, BulgariaGoogle Scholar
  3. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi: 10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  4. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:0955–0964CrossRefGoogle Scholar
  5. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474CrossRefPubMedGoogle Scholar
  6. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  7. Su ZH, Ohama T, Okada TS, Nakamura K, Ishikawa R, Osawa S (1996) Phylogenetic relationships and evolution of the japanese carabinae ground beetles based on mitochondrial nd5 gene sequences. J Mol Evol 42:124–129CrossRefPubMedGoogle Scholar
  8. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Wan XL, Hong MY, Liao AM, Kim MI, Kim KG, Han YS, Kim I (2012) Complete mitochondrial genome of a carabid beetle, Damaster mirabilissimus mirabilissim (Coleoptera: Carabidae). Entomol Res 42: 44–54 doi: 10.1111/j.1748-5967.2011.00355.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Life SciencesAnhui UniversityHefeiChina
  2. 2.Jiangsu Entry-Exit Inspection and Quarantine Bureau, Lab for Plant QuarantineNanjingChina
  3. 3.Nanjing Entry Exit Inspection and Quarantine BureauNanjingChina

Personalised recommendations