Advertisement

Conservation Genetics Resources

, Volume 10, Issue 2, pp 141–144 | Cite as

Characterization of the complete chloroplast genome sequence of Gynostemma compressum (Cucurbitaceae), an endemic plant in China

  • Xiao Zhang
  • Huimin Li
  • Tao Zhou
  • Yanci Yang
  • Guifang Zhao
Technical Note

Abstract

Gynostemma compressum is an endemic herbaceous species distributed in northwestern China. Here, we report the complete chloroplast (cp) genome sequence of G. compressum using Illumina pair-end sequencing. The circular complete cp genome of G. compressum was 157,959 bp in length and contained a large single copy region (86,809 bp), a small single copy region (18,560 bp) and two short inverted repeat (IRa and IRb) regions (26,295 bp). The cp genome encodes 133 genes including 87 protein-coding genes, 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes and 1 pseudogene. The maximum likelihood phylogenetic analysis showed that all the species of G. compressum formed a monophyletic clade and Gynostemma pentaphyllum was closely related to the genus Citrullus with strong bootstrap values.

Keywords

Gynostemma compressum Complete chloroplast genome Illumina sequencing Phylogeny 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31270364 and J1210063) and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (No. IRT1174).

References

  1. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chen SK (1995) A classificatory system and geographical distribution of the genus Gynostemma BL. (Cucurbitaceae). Acta Phytotaxonomica Sinica 33(4):403–410Google Scholar
  3. Chen XX, Liang DR (1991) A new species on medicinal plants of genus Gynostemma from Guangxi. Guihaia 11(1):13–14.Google Scholar
  4. Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  5. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 41(13):e129CrossRefPubMedPubMedCentralGoogle Scholar
  6. Rodríguez-Moreno L, González VM, Benjak A, Martí MC, Puigdomènech P, Aranda MA, Garcia-Mas J (2011) Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. BMC Genomics 12(1):424CrossRefPubMedPubMedCentralGoogle Scholar
  7. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690CrossRefPubMedGoogle Scholar
  8. Xie Z, Liu W, Huang H, Slavin M, Zhao Y, Whent M, Blackford J, Lutterodt H, Zhou H, Chen P (2010) Chemical composition of five commercial Gynostemma pentaphyllum samples and their radical scavenging, antiproliferative, and anti-inflammatory properties. J Agric Food Chem 58:11243–11249CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Xiao Zhang
    • 1
  • Huimin Li
    • 1
  • Tao Zhou
    • 1
  • Yanci Yang
    • 1
  • Guifang Zhao
    • 1
  1. 1.Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life ScienceNorthwest UniversityXi’anChina

Personalised recommendations