Advertisement

Conservation Genetics Resources

, Volume 10, Issue 1, pp 43–46 | Cite as

Characterization of the complete chloroplast genome of the Tertiary relict tree Phellodendron amurense (Sapindales: Rutaceae) using Illumina sequencing technology

  • Ke-Ke Chen
Technical Note
  • 152 Downloads

Abstract

The Amur cork tree (Phellodendron amurense) is an endangered deciduous tree species with high medicinal and economic values. In this study, its complete chloroplast genome was determined using high-throughput Illumina sequencing technology. The cp genome of P. amurense is 158,442 bp in length, and contains a pair of inverted repeat (IR) regions of 26,999 bp each, separated by a large single-copy (LSC) region of 86,160 bp and a small single-copy (SSC) region of 18,284 bp. It encodes 113 gene species (including 79 PCG, 30 tRNA and 4 rRNA species) with 21 of them occurring in double copies. The nucleotide composition is asymmetric (30.5% A, 19.6% C, 18.8% G & 31.1% T) with an overall A+T content of 61.6%. Phylogenetic analysis supports the morpho-taxonomy of the order Sapindales, and indicates that P. amurense is relatively closely related to the genus Zanthoxylum (as represented by Zanthoxylum bungeanum, Zanthoxylum piperitum and Zanthoxylum schinifolium).

Keywords

Amur cork tree Phellodendron amurense Relict species High-throughput sequencing Plastid genome 

Notes

Acknowledgements

The study was supported by the Special Agricultural Plan of Xi’an Science & Technology Bureau [NC1403(3)] and the Special Scientific Research Project of the Education Department of Shaanxi Province [15JK2140].

References

  1. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Fu LK (1992) China plant red data book—rare and endangered plants. Science Press, BeijingGoogle Scholar
  4. Gray AI, Bhandari P, Waterman PG (1988) New protolimonoids from the fruits of Phellodendron chinense. Phytochemistry 27:1805–1808. doi: 10.1016/0031-9422(88)80448-5 CrossRefGoogle Scholar
  5. Li J-X (2013) Current situation of study and protection of wild Phellodendron amurense resource in China. J Anhui Agric Sci 41:2896–2897Google Scholar
  6. Liu Y, Wei A (2017) The complete chloroplast genome sequence of an economically important plant, Zanthoxylum bungeanum (Rutaceae). Conserv Genet Resour 9:25–27. doi: 10.1007/s12686-016-0609-9 CrossRefGoogle Scholar
  7. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581. doi: 10.1093/nar/gkt289 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Qin Y-J, Wang Y, Yan X-F (2006) Status and sustainable utilization strategy of Phellodendron amurense resources in China. Chin Trad Herb Drugs 37:1104–1107Google Scholar
  9. Shivakumar VS, Appelhans MS, Johnson G, Carlsen M, Zimmer EA (2017) Analysis of whole chloroplast genomes from the genera of the Clauseneae, the curry tribe (Rutaceae, Citrus family). Mol Phylogenet Evol. doi: 10.1016/j.ympev.2016.12.015 PubMedGoogle Scholar
  10. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Twyford AD, Ness RW (2017) Strategies for complete plastid genome sequencing. Mol Ecol Resour. doi: 10.1111/1755-0998.12626 PubMedGoogle Scholar
  12. Xu G-J (1996) Chinese pharmacognosy. China Medical Science Press, BeijingGoogle Scholar
  13. Yang H, Li F, Wang C, Qi X, Luo Z, Li X, Zhang W (2016a) ISSR analysis on genetic diversity in natural populations of rare and endangered species of Phellodendron amurense. J Northeast Agric Univ 47:26–32Google Scholar
  14. Yang H, Li X, Liu D, Chen X, Li F, Qi X, Luo Z, Wang C (2016b) Genetic diversity and population structure of the endangered medicinal plant Phellodendron amurense in China revealed by SSR markers. Biochem Syst Ecol 66:286–292. doi: 10.1016/j.bse.2016.04.018 CrossRefGoogle Scholar
  15. Zhang D, Hartley TG (2008) Phellodendron Ruprecht. Flora China 11:75–76Google Scholar
  16. Zhang H, Hall N, McElroy JS, Lowe EK, Goertzen LR (2017a) Complete plastid genome sequence of goosegrass (Eleusine indica) and comparison with other Poaceae. Gene 600:36–43. doi: 10.1016/j.gene.2016.11.038 CrossRefPubMedGoogle Scholar
  17. Zhang N, Erickson DL, Ramachandran P, Ottesen AR, Timme RE, Funk VA, Luo Y, Handy SM (2017b) An analysis of Echinacea chloroplast genomes: implications for future botanical identification. Sci Rep 7:216. doi: 10.1038/s41598-017-00321-6 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Genetic Engineering Laboratory, School of Biological and Environmental EngineeringXi’an UniversityXi’anPeople’s Republic of China

Personalised recommendations