Advertisement

Conservation Genetics Resources

, Volume 9, Issue 2, pp 253–255 | Cite as

Establishing species-specific sexing markers suitable for non-invasive samples of species lacking genomic resources: an example using the highly endangered common hamster Cricetus cricetus

  • Tobias E. ReinersEmail author
  • Melanie Fuchs
  • Frank Hailer
  • Axel Janke
  • Carsten Nowak
Technical Note
  • 292 Downloads

Abstract

Here we present an approach to establish species-specific genetic markers for sex identification suitable for non-invasive samples. Such markers are not yet available for the endangered common hamster (Cricetus cricetus) because of the lack of genomic resources. Using Y chromosome conserved anchored tagged sequences (YCATS) exonic primers, we obtained Y-chromosomal sequences from hamsters and sympatric rodent species. From this, we designed hamster-specific primers targeting two short Y-chromosomal intron fragments and included them in microsatellite multiplex reactions, using autosomal loci also as amplification controls. The method yielded highly consistent results. The approach can be easily applied to development of sex markers in species for which there are no genome sequences available and thus aid conservation genetics efforts.

Keywords

Cricetus cricetus Molecular sexing Noninvasive Species-specific YCATS Y chromosome marker 

Supplementary material

12686_2016_664_MOESM1_ESM.docx (83 kb)
Supplementary material 1 (DOCX 83 KB)

References

  1. Ahlering MA, Hailer F, Roberts MT, Foley C (2011) A simple and accurate method to sex savannah, forest and Asian elephants using noninvasive sampling techniques. Mol Ecol Res 11:831–834CrossRefGoogle Scholar
  2. Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Res 9:1279–1301CrossRefGoogle Scholar
  3. Bidon T, Frosch C, Eiken HG, Kutschera VE, Hagen SB, Aarnes SG, Fain SR, Janke A, Hailer F (2013) A sensitive and specific multiplex PCR approach for sex identification of ursine and tremarctine bears suitable for non-invasive samples. Mol Ecol Res 13:362–368CrossRefGoogle Scholar
  4. Greminger MP, Kruetzen M, Schelling C, Pienkowska-Schelling A, Wandeler P (2010) The quest for Y-chromosomal markers–methodological strategies for mammalian non-model organisms. Mol Ecol Res 10:409–420CrossRefGoogle Scholar
  5. Hedmark E, Flagstad Ø, Segerström P, Persson J, Landa A, Ellegren H (2004) DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conserv Genet 5:405–410CrossRefGoogle Scholar
  6. Hellborg L, Ellegren H (2003) Y chromosome conserved anchored tagged sequences (YCATS) for the analysis of mammalian male-specific DNA. Mol Ecol 12:283–291CrossRefPubMedGoogle Scholar
  7. La Haye MJJ, Neumann K, Koelewijn HP (2012) Strong decline of gene diversity in local populations of the highly endangered Common hamster (Cricetus cricetus) in the Western part of its European range. Conserv Genet 13:311–322CrossRefGoogle Scholar
  8. Meinig H, Buschmann A, Reiners TE, Neukirchen M, Balzer S, Petermann R (2014) Der Status des Feldhamsters (Cricetus cricetus) in Deutschland. Natur Landschaft 89:338–343Google Scholar
  9. O’Brien J (2015) Saving the common hamster (Cricetus cricetus) from extinction in Alsace (France): potential flagship conservation or an exercise in futility? Hystrix 26:89–94Google Scholar
  10. Reiners TE, Encarnação JA, Wolters V (2011) An optimized hair trap for non-invasive genetic studies of small cryptic mammals. Eur J Wildlife Res 57:991–995CrossRefGoogle Scholar
  11. Reiners TE, Eidenschenk J, Neumann K, Nowak C (2014) Preservation of genetic diversity in a wild and captive population of a rapidly declining mammal, the Common hamster of the French Alsace region. Mamm Biol 79:240–246CrossRefGoogle Scholar
  12. Sastre N, Francino O, Lampreave G, Bologov VV, López-Martín JM, Sánchez A, Ramírez O (2009) Sex identification of wolf (Canis lupus) using non-invasive samples. Conserv Genet 10:555–558CrossRefGoogle Scholar
  13. Seddon JM (2005) Canid-specific primers for molecular sexing using tissue or non-invasive samples. Conserv Genet 6:147–149CrossRefGoogle Scholar
  14. Sugimoto T, Nagata J, Aramilev VV, Belozor A, Higashi S, McCullough DR (2006) Species and sex identification from faecal samples of sympatric carnivores, Amur leopard and Siberian tiger, in the Russian Far East. Conserv Genet 7:799–802CrossRefGoogle Scholar
  15. Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Tobias E. Reiners
    • 1
    • 4
    Email author
  • Melanie Fuchs
    • 1
  • Frank Hailer
    • 2
  • Axel Janke
    • 3
    • 4
  • Carsten Nowak
    • 1
  1. 1.Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum, Frankfurt am Main, GermanyGelnhausenGermany
  2. 2.School of BiosciencesCardiff UniversityCardiffUK
  3. 3.Senckenberg Biodiversity and Climate Research Centre (BiK-F)Senckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany
  4. 4.Institute for Ecology, Evolution and DiversityGoethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations