Conservation Genetics Resources

, Volume 8, Issue 4, pp 423–426

A new complete mitogenome of the critically endangered Chinese pangolin Manis pentadactyla

  • Ranjeev Hari
  • Ian Charles Paterson
  • Siew Woh Choo
Technical Note

Abstract

Manis pentadactyla is listed as a critically endangered species under the IUCN red list due its rapidly dwindling population as it is widely trafficked for its scale and meat. A mitochondrial DNA (mtDNA) resource is particularly important in helping to differentiate pangolin species that are morphologically similar. Here, we present a new mtDNA sequence which replaces a previously misclassified Chinese pangolin sequence in the NCBI. The circular mitogenome contained 13 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNA genes typical of a metazoan mtDNA. This study provides an important genetic resources for further research and forensic conservation of this critically endangered species.

Keywords

Manis pentadactyla Complete mtDNA Next generation sequencing 

References

  1. Arnason U, Adegoke JA, Bodin K et al (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci 99:8151–8156CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bernt M, Donath A, Jühling F et al (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319CrossRefPubMedGoogle Scholar
  3. Chevreux (2007) MIRA: an automated genome adn EST assembler. Thesis, Ruprecht-Karls University, Duisburg Google Scholar
  4. Cuvier G (1833) The animal kingdom: arranged in conformity with its organization. G. & C. & H. Carvill, New YorkGoogle Scholar
  5. Du Toit Z, Grobler JP, Kotzé A et al (2014) The complete mitochondrial genome of Temminck’s ground pangolin (Smutsia temminckii; Smuts, 1832) and phylogenetic position of the Pholidota (Weber, 1904). Gene 551:49–54CrossRefPubMedGoogle Scholar
  6. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res 41:e129CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefPubMedGoogle Scholar
  8. Hassanin A, Hugot J-P, van Vuuren BJ (2015) Comparison of mitochondrial genome sequences of pangolins (Mammalia, Pholidota). C R Biol 338:260–265CrossRefPubMedGoogle Scholar
  9. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518CrossRefPubMedPubMedCentralGoogle Scholar
  10. Qin X-M, Dou S-R, Guan Q-X et al (2012) Complete mitochondrial genome of the Manis pentadactyla (Pholidota, Manidae): comparison of M. pentadactyla and M. tetradactyla. Mitochondrial DNA 23:37–38. doi:10.3109/19401736.2011.643881 CrossRefPubMedGoogle Scholar
  11. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  12. Wu S, Liu N, Zhang Y, Ma GZ (2004) Assessment of threatened status of Chinese Pangolin (Manis pentadactyla). Chin J Appl Environ Biol 10:456–461Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ranjeev Hari
    • 1
    • 2
  • Ian Charles Paterson
    • 1
  • Siew Woh Choo
    • 1
    • 2
  1. 1.Department of Oral and Craniofacial Sciences, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  2. 2.Genome Informatics Research Laboratory, High Impact Research (HIR) BuildingUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations