Advertisement

Conservation Genetics Resources

, Volume 7, Issue 3, pp 693–696 | Cite as

Drinking water as a source of environmental DNA for the detection of terrestrial wildlife species

  • Torrey W. RodgersEmail author
  • Karen E. Mock
Methods and Resources Article

Abstract

Use of environmental DNA for wildlife species detection is a field of research that has seen rapid growth in recent years, however, the majority of research to date has been focused on aquatic species. Here, we propose and test a novel source for the detection of terrestrial species with environmental DNA: drinking water from watering holes and wildlife water developments. We hypothesized that when terrestrial animals drink from a water source, DNA from saliva and buccal cells is shed and can be isolated for species identification. We tested this hypothesis in a pilot study by filtering drinking water supplied to coyotes (Canis latrans) at a captive coyote research facility. DNA was successfully extracted from filters, amplified by the polymerase chain reaction, and sequenced, and sequences were positively identified as belonging to coyotes. We believe this environmental DNA based approach holds great promise for the detection of terrestrial species of conservation concern.

Keywords

Canis latrans Coyote eDNA 

Notes

Acknowledgments

We thank Eric M. Gese for the idea to test eDNA techniques on carnivore drinking water. We also thank Julie K. Young and Stacey Brummer from the NWRC-Predator Research Facility, and John Olson and Charles Hawkins for their support. This work was funded by NASA Biodiversity and Ecological Forecasting program Grant NNX14AC40G.

References

  1. Andersen K, Bird KL, Rasmussen M, Haile J, Breuning-Madsen H, Kjaer KH, Orlando L, Gilbert MTP, Willerslev E (2012) Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity. Mol Ecol 21:1966–1979. doi: 10.1111/j.1365-294X.2011.05261.x CrossRefPubMedGoogle Scholar
  2. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367. doi: 10.1016/j.tree.2014.04.003 CrossRefPubMedGoogle Scholar
  3. Calvignac-Spencer S, Merkel K, Kutzner N, Kuhl H, Boesch C, Kappeler PM, Metzger S, Schubert G, Leendertz FH (2013) Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity. Mol Ecol 22:915–924. doi: 10.1111/mec.12183 CrossRefPubMedGoogle Scholar
  4. Chaves PB, Graeff VG, Lion MB, Oliveira LR, Eizirik E (2012) DNA barcoding meets molecular scatology: short mtDNA sequences for standardized species assignment of carnivore noninvasive samples. Mol Ecol Resour 12:18–35. doi: 10.1111/j.1755-0998.2011.03056.x CrossRefPubMedGoogle Scholar
  5. Coissac E, Riaz T, Puillandre N (2012) Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol Ecol 21:1834–1847. doi: 10.1111/j.1365-294X.2012.05550.x CrossRefPubMedGoogle Scholar
  6. Dejean T, Valentini A, Duparc A, Pellier-Cuit S, Pompanon F, Taberlet P, Miaud C (2011) Persistence of environmental DNA in freshwater ecosystems. PLoS One. doi: 10.1371/journal.pone.0023398 Google Scholar
  7. Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425. doi: 10.1098/rsbl.2008.0118 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Goldberg CS, Sepulveda A, Ray A, Baumgardt J, Waits LP (2013) Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw Sci 32:792–800. doi: 10.1899/13-046.1 CrossRefGoogle Scholar
  9. Goldberg CS, Strickler KM, Pilliod DS (2015) Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biol Conserv 183:1–3. doi: 10.1016/j.biocon.2014.11.040 CrossRefGoogle Scholar
  10. Hoss M, Kohn M, Paabo S, Knauer F, Schroder W (1992) Excrement analysis by PCR. Nature 359:199. doi: 10.1038/359199a0 CrossRefPubMedGoogle Scholar
  11. Larsen RT, Bissonette JA, Flinders JT, Whiting JC (2012) Framework for understanding the influences of wildlife water developments in the western United States. Calif Fish Game 98:148–163Google Scholar
  12. Nichols RV, Konigsson H, Danell K, Spong G (2012) Browsed twig environmental DNA: diagnostic PCR to identify ungulate species. Mol Ecol Resour 12:983–989. doi: 10.1111/j.1755-0998.2012.03172.x CrossRefPubMedGoogle Scholar
  13. Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  14. Piaggio AJ, Engeman RM, Hopken MW, Humphrey JS, Keacher KL, Bruce WE, Avery ML (2014) Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Mol Ecol Resour 14:374–380. doi: 10.1111/1755-0998.12180 CrossRefPubMedGoogle Scholar
  15. Pilliod DS, Goldberg CS, Arkle RS, Waits LP (2013) Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can J Fish Aquat Sci 70:1123–1130. doi: 10.1139/cjfas-2013-0047 CrossRefGoogle Scholar
  16. Rodgers T, Janečka J (2013) Applications and techniques for non-invasive faecal genetics research in felid conservation. Eur J Wildl Res 59:1–16. doi: 10.1007/s10344-012-0675-6 CrossRefGoogle Scholar
  17. Rosenstock SS, Ballard WB, Devos JC (1999) Viewpoint: benefits and impacts of wildlife water developments. J Range Manage 52:302–311. doi: 10.2307/4003538 CrossRefGoogle Scholar
  18. Schnell IB, Thomsen PF, Wilkinson N, Rasmussen M, Jensen LRD, Willerslev E, Bertelsen MF, Gilbert MTP (2012) Screening mammal biodiversity using DNA from leeches. Curr Biol 22:R262–R263. doi: 10.1016/j.cub.2012.02.058 CrossRefPubMedGoogle Scholar
  19. Schubert G, Stockhausen M, Hoffmann C, Merkel K, Vigilant L, Leendertz FH, Calvignac-Spencer S (2014) Targeted detection of mammalian species using carrion fly-derived DNA. Mol Ecol Resour 15:285–294. doi: 10.1111/1755-0998.12306 CrossRefPubMedGoogle Scholar
  20. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805. doi: 10.1111/j.1365-294X.2012.05538.x CrossRefPubMedGoogle Scholar
  21. Strickler KM, Fremier AK, Goldberg CS (2015) Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol Conserv 183:85–92. doi: 10.1016/j.biocon.2014.11.038 CrossRefGoogle Scholar
  22. Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012a) Environmental DNA. Mol Ecol 21:1789–1793. doi: 10.1111/j.1365-294X.2012.05542.x CrossRefPubMedGoogle Scholar
  23. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012b) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050. doi: 10.1111/j.1365-294X.2012.05470.x CrossRefPubMedGoogle Scholar
  24. Thomsen PF, Willerslev E (2015) Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18. doi: 10.1016/j.biocon.2014.11.019 CrossRefGoogle Scholar
  25. Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573. doi: 10.1111/j.1365-294X.2011.05418.x CrossRefPubMedGoogle Scholar
  26. Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manag 69:1419–1433. doi: 10.2193/0022-541x(2005)69[1419:ngstfw]2.0.co;2
  27. Wilcox TM, McKelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR, Schwartz MK (2013) Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS One. doi: 10.1371/journal.pone.0059520 Google Scholar
  28. Williams CL, Blejwas K, Johnston JJ, Jaeger MM (2003) A coyote in sheep’s clothing: predator identification from saliva. Wildl Soc Bull 31:926–932Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Wildland ResourcesUtah State UniversityLoganUSA

Personalised recommendations