Conservation Genetics Resources

, Volume 6, Issue 4, pp 807–811 | Cite as

Deep sequencing of the transcriptome and mining of single nucleotide polymorphisms (SNPs) provide genomic resources for applied studies in Chinook salmon (Oncorhynchus tshawytscha)

  • Daniel Gomez-UchidaEmail author
  • Lisa W. Seeb
  • Kenneth I. Warheit
  • Garrett J. McKinney
  • James E. Seeb
Technical Note


We deep-sequenced the transcriptome of Chinook salmon (Oncorhynchus tshawytscha) that yielded 2.5 million high-quality reads (combined for four fish) with an average length of 378 bp. De novo assembly resulted in 44,264 contigs with an average length of 567 bp and an average depth of 29 reads. Nearly half (42 %) of the contigs were annotated through alignment against protein, gene ontology (GO) and taxonomic databases using BLASTX. Overrepresented GO categories included metabolism (32 %), biosynthesis (11 %), transport (7 %), transcription (5 %) and other important pathways (response to stress, lipid metabolism and reproduction: 3 %). We identified 3,793 putative single nucleotide polymorphisms (SNPs) in silico, of which 718 were annotated. We characterized a sample of 54 annotated SNPs within contigs with transition-to-transversion ratios <1. Of these, 26 were nonsynonymous SNPs. Transcriptome sequencing remains a source of novel polymorphisms that holds promise for applied studies in Chinook salmon, an important salmonid species native to the North Pacific.


Chinook salmon Transcriptome sequencing Transcriptome assembly Single nucleotide polymorphisms 



Eleni Petrou and Sewall Young helped in the field. We thank Washington Department of Fish and Wildlife hatcheries facilities for samples. Carita Pascal and Jesse Tsai assisted during laboratory stages. Meredith Everett provided the Perl script to parse BLASTX hits. Funding from N08-12 High-resolution SNPs for identification of poorly differentiated stocks (Pacific Salmon Commission's Chinook Technical Committee (US section) for Funding under the letter of Agreement, LOA), Washington State General Fund (to KIW), Gordon and Betty Moore Foundation (to LWS and JES), and FONDAP 15110027 from Chile’s CONICYT (to DG-U) are greatly appreciated.

Supplementary material

12686_2014_235_MOESM1_ESM.pdf (174 kb)
Supplementary material 1 (PDF 174 kb)


  1. Ben-Moshe Z, Vatine G, Alon S, Tovin A, Mracek P, Foulkes NS, Gothilf Y (2010) Multiple PAR and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns. Chronobiol Int 27:1509–1531PubMedCrossRefGoogle Scholar
  2. Everett MV, Grau ED, Seeb JE (2011) Short reads and nonmodel species: exploring the complexities of next-generation sequence assembly and SNP discovery in the absence of a reference genome. Mol Ecol Resour 11:93–108. doi: 10.1111/j.1755-0998.2010.02969.x PubMedCrossRefGoogle Scholar
  3. Gavery MR, Roberts SB (2012) Characterizing short read sequencing for gene discovery and RNA-Seq analysis in Crassostrea gigas. Comp Biochem Physiol D Genomics Proteomics 7:94–99. doi: 10.1016/j.cbd.2011.12.003 CrossRefGoogle Scholar
  4. Good TP, Waples RS, Adams PB (2005) Updated status of federally listed ESUs of West Coast salmon and steelhead. U.S. Dept. CommerGoogle Scholar
  5. Hale MC, McCormick CR, Jackson JR, DeWoody JA (2009) Next-generation pyrosequencing of gonad transcriptomes in the polyploid lake sturgeon (Acipenser fulvescens): the relative merits of normalization and rarefaction in gene discovery. BMC Genomics 10:203. doi: 10.1186/1471-2164-10-203 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Hale MC, Jackson JR, DeWoody JA (2010) Discovery and evaluation of candidate sex-determining genes and xenobiotics in the gonads of lake sturgeon (Acipenser fulvescens). Genetica 138:745–756. doi: 10.1007/s10709-010-9455-y PubMedCrossRefGoogle Scholar
  7. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series, vol 41, pp 95–98Google Scholar
  8. Hu ZL, Bao J, Reecy JM (2008) CateGOrizer: a web-based program to batch analyze gene ontology classification categories. Online J Bioinform 9:108–112Google Scholar
  9. Jeukens J, Renaut S, St-Cyr J, Nolte AW, Bernatchez L (2010) The transcriptomics of sympatric dwarf and normal lake whitefish (Coregonus clupeaformis spp., Salmonidae) divergence as revealed by next-generation sequencing. Mol Ecol 19:5389–5403. doi: 10.1111/j.1365-294X.2010.04934.x PubMedCrossRefGoogle Scholar
  10. Lemay MA, Donnelly DJ, Russello MA (2013) Transcriptome-wide comparison of sequence variation in divergent ecotypes of kokanee salmon. BMC Genomics 14. doi: 10.1186/1471-2164-14-308
  11. Limborg MT, Blankenship SM, Young SF, Utter FM, Seeb LW, Hansen MHH, Seeb JE (2012) Signatures of natural selection among lineages and habitats in Oncorhynchus mykiss. Ecol Evol 2:1–18. doi: 10.1002/ece3.59 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Myers JM et al. (1998) Status review of Chinook salmon from Washington, Idaho, Oregon, and California. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-35Google Scholar
  13. Quinn N et al (2010) Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire. BMC Genomics 11:539PubMedCentralPubMedCrossRefGoogle Scholar
  14. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
  15. RepeatMasker Open-3.0 (2010) Institute for Systems Biology.
  16. Roberts SB, Hauser L, Seeb LW, Seeb JE (2012) Development of genomic resources for Pacific herring through targeted transcriptome pyrosequencing. PloS One 7. doi: 10.1371/journal.pone.0030908
  17. Sanchez C, Smith T, Wiedmann R, Vallejo R, Salem M, Yao J, Rexroad C (2009) Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library. BMC Genomics 10:559. doi: 10.1186/1471-2164-10-559
  18. Sanchez CC, Weber GM, Gao GT, Cleveland BM, Yao JB, Rexroad CE (2011) Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors. BMC Genomics 12:626. doi: 10.1186/1471-2164-12-626 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Seeb JE, Pascal CE, Grau ED, Seeb LW, Templin WD, Harkins T, Roberts SB (2011) Transcriptome sequencing and high-resolution melt analysis advance single nucleotide polymorphism discovery in duplicated salmonids. Mol Ecol Resour 11:335–348. doi: 10.1111/j.1755-0998.2010.02936.x PubMedCrossRefGoogle Scholar
  20. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647. doi: 10.1111/j.1365-294X.2008.03666.x PubMedCrossRefGoogle Scholar
  21. Willette DA et al (2014) So, you want to use next-generation sequencing in marine systems? Insight from the Pan-Pacific Advanced Studies Institute. Bull Mar Sci 90:79–122. doi: 10.5343/bms.2013.1008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Daniel Gomez-Uchida
    • 1
    • 2
    Email author
  • Lisa W. Seeb
    • 1
  • Kenneth I. Warheit
    • 1
    • 3
  • Garrett J. McKinney
    • 1
  • James E. Seeb
    • 1
  1. 1.School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleUSA
  2. 2.Department of Zoology & Interdisciplinary Center for Aquaculture Research (INCAR)Universidad de ConcepciónConcepciónChile
  3. 3.Washington Department of Fish and WildlifeOlympiaUSA

Personalised recommendations