Advertisement

Conservation Genetics Resources

, Volume 6, Issue 1, pp 41–44 | Cite as

Testing mitochondrial markers for noninvasive genetic species identification in European mammals

  • Carsten NowakEmail author
  • Marc Büntjen
  • Katharina Steyer
  • Christiane Frosch
Technical Note

Abstract

While DNA-barcoding routines have largely facilitated molecular identification of animal species, there is no common strategy for species identifications based on noninvasively collected samples. We compared the performance of six commonly used mitochondrial fragments for identification success of low-quality hair and scat samples from 15 European mammals. The standard cytochrome oxidase subunit 1 barcoding fragment performed worst in the test, with only three successful species identifications out of 32 samples. In contrast, three short fragments (16S and 12S rDNA, cytochrome b) led to reliable species identifications for >80 % of all tested samples. Success rates also differed among feeding types.

Keywords

Noninvasive sampling Species discrimination Mammalia Genetic monitoring Wildlife forensics 

Notes

Acknowledgments

Several wildlife parks provided kind sampling assistance. Sequence reaction were performed in the BiK-F Laboratory Centre, Frankfurt. This project was funded by the Leibniz-Association in the context of the “Joint Initiative for Research and Innovation” (SAW-Pakt).

References

  1. Bidlack AL, Reed SE, Palsboll PJ, Getz WM (2007) Characterization of a western North American carnivore community using PCR-RFLP of cytochrome b obtained from fecal samples. Conserv Genet 8(6):1511–1513. doi: 10.1007/s10592-007-9285-3 CrossRefGoogle Scholar
  2. Cheney LC (1995) An assessment of genetic variation within and between sea otter (Enhydra lutris) populations off Alaska and California. Master′s Thesis, San Jose State UniversityGoogle Scholar
  3. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194. doi: 10.1101/gr.8.3.175 PubMedCrossRefGoogle Scholar
  4. Fernandes CA, Ginja C, Pereira I, Tenreiro R, Bruford MW, Santos-Reis M (2008) Species-specific mitochondrial DNA markers for identification of non-invasive samples from sympatric carnivores in the Iberian Peninsula. Conserv Genet 9(3):681–690. doi: 10.1007/s10592-007-9364-5 CrossRefGoogle Scholar
  5. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3(5):294–299Google Scholar
  6. Gompper ME, Kays RW, Ray JC, Lapoint SD, Bogan DA, Cryan JR (2006) A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildlife Soc B 34(4):1142–1151. doi:10.2193/0091-7648(2006)34[1142:acontt]2.0.co;2 CrossRefGoogle Scholar
  7. Karamanlidis AA, Straka M, Drosopoulou E, Hernando MD, Kocijan I, Paule L, Scouras Z (2012) Genetic diversity, structure, and size of an endangered brown bear population threatened by highway construction in the Pindos Mountains, Greece. Eur J Wildl Res 58(3):511–522. doi: 10.1007/s10344-011-0598-7 CrossRefGoogle Scholar
  8. Kitano T, Umetsu K, Tian W, Osawa M (2007) Two universal primer sets for species identification among vertebrates. Int J Legal Med 121(5):423–427. doi: 10.1007/s00414-006-0113-y PubMedCrossRefGoogle Scholar
  9. Paxinos E, McIntosh C, Ralls K, Fleischer R (1997) A noninvasive method for distinguishing among canid species: amplification and enzyme restriction of DNA from dung. Mol Ecol 6(5):483–486. doi: 10.1046/j.1365-294X.1997.00206.x PubMedCrossRefGoogle Scholar
  10. Perez T, Vazquez F, Naves J, Fernandez A, Corao A, Albornoz J, Dominguez A (2009) Non-invasive genetic study of the endangered Cantabrian brown bear (Ursus arctos). Conserv Genet 10(2):291–301. doi: 10.1007/s10592-008-9578-1 CrossRefGoogle Scholar
  11. Pun K-M, Albrecht C, Castella V, Fumagalli L (2009) Species identification in mammals from mixed biological samples based on mitochondrial DNA control region length polymorphism. Electrophoresis 30(6):1008–1014. doi: 10.1002/elps.200800365 PubMedCrossRefGoogle Scholar
  12. Ruell EW, Crooks KR (2007) Evaluation of noninvasive genetic sampling methods for felid and canid populations. Wildl Manag 71(5):1690–1694. doi: 10.2193/2006-061 CrossRefGoogle Scholar
  13. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22(1):25–33. doi: 10.1016/j.tree.2006.08.009 PubMedCrossRefGoogle Scholar
  14. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14(8):323–327. doi: 10.1016/S0169-5347(99)01637-7 PubMedCrossRefGoogle Scholar
  15. Vila C, Amorim IR, Leonard JA, Posada D, Castroviejo J, Petrucci-Fonseca F, Crandall KA, Ellegren H, Wayne RK (1999) Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol Ecol 8(12):2089–2103. doi: 10.1046/j.1365-294x.1999.00825.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Carsten Nowak
    • 1
    • 2
    Email author
  • Marc Büntjen
    • 1
  • Katharina Steyer
    • 1
  • Christiane Frosch
    • 1
  1. 1.Conservation Genetics GroupSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
  2. 2.Biodiversity and Climate Research Centre (BiK-F)Frankfurt am MainGermany

Personalised recommendations