Advertisement

Conservation Genetics Resources

, Volume 5, Issue 2, pp 315–318 | Cite as

Development and characterization of 21 polymorphic microsatellite markers for the barren-ground shrew, Sorex ugyunak (Mammalia: Sorcidae), through next-generation sequencing, and cross-species amplification in the masked shrew, S. cinereus

  • S. A. SonsthagenEmail author
  • G. K. Sage
  • M. Fowler
  • A. G. Hope
  • J. A. Cook
  • S. L. Talbot
Technical Note

Abstract

We used next generation shotgun sequencing to develop 21 novel microsatellite markers for the barren-ground shrew (Sorex ugyunak), which were polymorphic among individuals from northern Alaska. The loci displayed moderate allelic diversity (averaging 6.81 alleles per locus) and heterozygosity (averaging 70 %). Two loci deviated from Hardy–Weinberg equilibrium (HWE) due to heterozygote deficiency. While the population did not deviate from HWE overall, it showed significant linkage disequilibrium suggesting this population is not in mutation-drift equilibrium. Nineteen of 21 loci were polymorphic in masked shrews (S. cinereus) from interior Alaska and exhibited linkage equilibrium and HWE overall. All loci yielded sufficient variability for use in population studies.

Keywords

Microsatellite markers Next generation sequencing Population genetics Sorex cinereus Sorex ugyunak 

Notes

Acknowledgments

Support was provided by the US Geological Survey Alaska Science Center Changing Arctic Ecosystem and DOI on the Landscape initiatives, and NSF 0415668. The Museum of Southwestern Biology provided specimens. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

References

  1. Basset P, Yannic G, Hausser J (2006) Genetic and karyotypic structure in the shrews of Sorex araneus group: are they independent? Mol Ecol 15:1577–1587. doi: 10.1111/j.1365-294X.2006.02891.x PubMedCrossRefGoogle Scholar
  2. Corander J, Waldmann P, Marttinen P, Sillanpää MJ (2004) BAPS2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20:2363–2369PubMedCrossRefGoogle Scholar
  3. Demboski JR, Cook JA (2003) Phylogenetic diversification within the Sorex cinereus group (Soricidae). J Mammal 84:144–158. doi: 10.1644/1545-1542(2003)084<0144:PDWTSC>2.0.CO;2 CrossRefGoogle Scholar
  4. Faircloth BC (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94. doi: 10.1111/j.1471-8286.2007.01884.x PubMedCrossRefGoogle Scholar
  5. Hope AG (2012) High shrew diversity on Alaska’s Seward Peninsula: community assembly and environmental change. Northwest Nat 93:101–110. doi: 10.1898/nwn11-26.1 CrossRefGoogle Scholar
  6. Hope AG, Speer KA, Demboski JR, Talbot SL, Cook JA (2012) A climate for speciation: rapid spatial diversification within the Sorex cinereus complex of shrews. Mol Phy Evol 64:671–684. doi: 10.1016/j.ympev.2012.05.021 CrossRefGoogle Scholar
  7. MacDonald SO, Cook JA (2009) Recent mammals of Alaska. University of Alaska Press, Fairbanks, AlaskaGoogle Scholar
  8. Maldonado JE, Leonard J, Miranda GA, Ortega J, Wayne RK, Aguilera RJ (2006) Ten polymorphic microsatellite loci for the endangered Buena Vista Lake shrew (Sorex ornatus relictus). Mol Ecol Notes 6:349–352. doi: 10.1111/j.1471-8286.2005.01228.x CrossRefGoogle Scholar
  9. Ortega J, Young S, Simons LH, Maldonado JE (2005) Characterization of six microsatellite DNA loci for Sorex arizonae. Mol Ecol Notes 5:851–853. doi: 10.1111/j.1471-8286.2005.01086.x CrossRefGoogle Scholar
  10. Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, McGuire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, van der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358. doi: 10.1126/science.1173113 PubMedCrossRefGoogle Scholar
  11. Raymond M, Rousset F (1995) GENEPOP version 3.3: population genetics software for exact test and ecumenicism. J Hered 86:248–249Google Scholar
  12. Sonsthagen SA, Coonan TJ, Latta BC, Sage GK, Talbot SL (2012) Genetic diversity of a newly established population of golden eagles on the Channel Islands, California. Biol Cons 146:116–122. doi: 10.1016/j.biocon.2011.11.031 CrossRefGoogle Scholar
  13. Templeton AR (2006) Population genetics and microevolutionary theory. Wiley, Hoboken, NJCrossRefGoogle Scholar
  14. Toussaint R, Sage G, Talbot S, Sheel D (2012) Microsatellite marker isolation and development for the giant Pacific octopus. Cons Gen Res 4:545–548. doi: 10.1007/s12686-011-9588-z CrossRefGoogle Scholar
  15. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA)  2012

Authors and Affiliations

  • S. A. Sonsthagen
    • 1
    Email author
  • G. K. Sage
    • 1
  • M. Fowler
    • 1
  • A. G. Hope
    • 1
  • J. A. Cook
    • 2
  • S. L. Talbot
    • 1
  1. 1.US Geological Survey, Alaska Science CenterAnchorageUSA
  2. 2.Museum of Southwestern Biology and Department of BiologyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations