Advertisement

Conservation Genetics Resources

, Volume 4, Issue 4, pp 845–847 | Cite as

Rapid isolation of 14 microsatellite markers for Van Diemen’s siphon limpet Siphonaria diemenensis

  • Jonathan Sandoval-Castillo
  • Michael G. Gardner
  • Luciano B. Beheregaray
Technical Note

Abstract

Siphon limpets are an ecologically important component of the intertidal zone of Australia’s temperate coast. Using 1/16 of a shotgun pyrosequencing plate, a set of 14 microsatellites was developed for the Van Diemen’s siphon limpet (Siphonaria diemenensis). From 2,744 sequences that contained putative microsatellite motifs, 18 were selected for primer design and tested for amplification. Fourteen microsatellite loci were successfully genotyped in 48 specimens of S. diemenensis from two localities. The number of alleles per locus varied from 5 to 35 (mean = 14.6) and the observed heterozygosity ranged from 0.53 to 0.90 (mean = 0.77). Only one locus showed significant deviation from Hardy–Weinberg equilibrium, probably due to null alleles. No linkage disequilibrium between pairs of loci was detected. Connectivity and seascape genetic studies on siphon limpets using the markers reported here should provide important information for management of temperate Australian marine biodiversity.

Keywords

Seascape genetics Marine connectivity Population genetics MPA Mollusc Phylogeography 

Notes

Acknowledgments

Funding for this study was provided by the Australian Research Council (DP110101275 to Beheregaray, Möller & Waters). We thank Minami Sasaki and Seraina Bracamonte for laboratory assistance. This article is publication #46 of the Molecular Ecology Group for Marine Research (MEGMAR).

References

  1. Beheregaray LB, Moller LM, Schwartz T, Chao NL, Caccone A (2004) Microsatellite markers for the cardinal tetra Paracheirodon axelrodi, a commercially important fish from central Amazonia. Mol Ecol 4:330–332CrossRefGoogle Scholar
  2. Carvalho D, Beheregaray L (2011) Rapid development of microsatellites for the endangered Neotropical catfish Conorhynchus conirostris using a modest amount of 454 shot-gun pyrosequencing. Conserv Genet Resour 3:373–375CrossRefGoogle Scholar
  3. Faircloth BC (2008) msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94PubMedCrossRefGoogle Scholar
  4. Gardner MG, Fitch AJ, Bertozzi T, Lowe AJ (2011) Rise of the machines—recommendations for ecologists when using next generation sequencing for microsatellite development. Mol Ecol Resour 11:1093–1101PubMedCrossRefGoogle Scholar
  5. Hart MW, Marko PB (2010) It’s about time: divergence, demography, and the evolution of developmental modes in marine invertebrates. Integr Comp Biol 50:643–661PubMedCrossRefGoogle Scholar
  6. Johnson MS, Black R (1984) The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. Mar Biol 79:295–302CrossRefGoogle Scholar
  7. Mapstone GM (1978) Egg capsules and early development in Siphonaria diemenensts (Quoy and Gaimard, 1833) and Siphonaria baconi (Reeve, 1856). J Malacologic Soc Australia 4Google Scholar
  8. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedGoogle Scholar
  9. Meglécz E (2007) MICROFAMILY (version 1): a computer program for detecting flanking-region similarities among different microsatellite loci. Mol Ecol Notes 7:18–20CrossRefGoogle Scholar
  10. Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  11. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  12. Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386Google Scholar
  13. Shepherd SA, Thomas IM (1989) Marine invertebrates of Southern Australia. Part II (Mollusca). South Australian Government Printing Division, AdelaideGoogle Scholar
  14. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jonathan Sandoval-Castillo
    • 1
  • Michael G. Gardner
    • 1
    • 2
    • 3
  • Luciano B. Beheregaray
    • 1
  1. 1.Molecular Ecology Laboratory, School of Biological SciencesFlinders UniversityAdelaideAustralia
  2. 2.School of Biological SciencesFlinders UniversityAdelaideAustralia
  3. 3.South Australian Regional Facility for Molecular Ecology and Evolution, North TceAdelaideAustralia

Personalised recommendations