Conservation Genetics Resources

, Volume 4, Issue 3, pp 665–667 | Cite as

A reliable method for individual identification and gender determination of wild leopards (Panthera pardus fusca) using non-invasive samples

  • Trishna Dutta
  • Sandeep Sharma
  • Jesús E. Maldonado
  • Thomas C. Wood
  • John Seidensticker
Technical Note

Abstract

We describe a highly polymorphic microsatellite panel for identifying individual leopards using DNA from scat. After successfully screening 16 published microsatellites, we optimized a panel of 7 microsatellites that yields a Probability of Identity between siblings value of 5.24E−04. We used this panel to identify 217 individuals from 287 leopard scats collected from five tiger-reserves in Central India. We identified 101 males and 92 females by amplifying a fragment of the Amelogenin protein gene. This panel will be helpful to study genetic structure, gene flow, relatedness and sex ratio of leopards.

Keywords

Noninvasive DNA sampling Panthera pardus fusca Individual identification Microsatellite Sex assignment 

References

  1. Athreya VR, Thakur SS, Chaudhuri S, Belsare AV (2007) Leopards in human-dominated areas: a spillover from sustained translocations into nearby forests? J Bombay Nat Hist Soc 1:45–50Google Scholar
  2. Bhagavatula J, Singh L (2006) Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genet 7:48PubMedCrossRefGoogle Scholar
  3. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  4. Karanth KU, Sunquist ME (2000) Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. J Zool 250:255–265CrossRefGoogle Scholar
  5. Marshall TC, Slate J, Kruuk LE, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655PubMedCrossRefGoogle Scholar
  6. Menotti-Raymond M, David VA, Lyons LA et al (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23PubMedCrossRefGoogle Scholar
  7. Mondol S, Navya R, Athreya V, Sunagar K, Selvaraj V, Ramakrishnan U (2009) A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes. BMC Genet 10:79Google Scholar
  8. Mukherjee N, Mondol S, Andheria A, Ramakrishnan U (2007) Rapid multiplex PCR based species identification of wild tigers using non-invasive samples. Conserv Genet 8:1465–1470CrossRefGoogle Scholar
  9. Perez I, Geffen E, Mokady O (2006) Critically endangered Arabian leopards Panthera pardus nimr in Israel: estimating population parameters using molecular scatology. Oryx 40:295–301CrossRefGoogle Scholar
  10. Pilgrim KL, Mckelvey KS, Riddle AE, Schwartz MK (2005) Felid sex identification based on noninvasive genetic samples. Mol Ecol Notes 5:60–61CrossRefGoogle Scholar
  11. Raymond M, Rousset F (1995) Genepop (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  12. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  13. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  14. Taberlet P, Griffin S, Goossens B et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acid Res 24:3189–3194PubMedCrossRefGoogle Scholar
  15. Uphyrkina O, Johnson WE, Quigley H et al (2001) Phylogenetics, genome diversity and origin of modern leopard, Panthera pardus. Mol Ecol 10:2617–2633PubMedCrossRefGoogle Scholar
  16. Valière N (2002) GIMLET: a computer program for analyzing genetic individual identification data. Mol Ecol Notes 2:377–379Google Scholar
  17. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  18. Wahlund S (1928) Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106CrossRefGoogle Scholar
  19. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2012

Authors and Affiliations

  • Trishna Dutta
    • 1
    • 2
  • Sandeep Sharma
    • 1
    • 2
  • Jesús E. Maldonado
    • 1
    • 2
  • Thomas C. Wood
    • 2
  • John Seidensticker
    • 1
  1. 1.Smithsonian Conservation Biology InstituteWashingtonUSA
  2. 2.Department of Environmental Science and PolicyGeorge Mason UniversityFairfaxUSA

Personalised recommendations