Conservation Genetics Resources

, Volume 4, Issue 3, pp 621–624 | Cite as

Development and characterization of 13 new, and cross amplification of 3, polymorphic nuclear microsatellite loci in the common myna (Acridotheres tristis)

  • Cécile Berthouly-Salazar
  • Phillip Cassey
  • Bettine Jansen van Vuuren
  • Berndt Janse van Rensburg
  • Cang Hui
  • Michael G. Gardner
  • Johannes J. Le Roux
Technical Note


We used a next generation sequencing (NGS) approach to screen for genome-wide nuclear microsatellite loci in the common (Indian) myna, Acridotheres tristis. In addition, markers previously developed for other Sturnidae species were tested for cross-amplification in A. tristis. In total, we identified 20 loci from NGS data and tested 26 loci for cross-amplification. Out of all loci (NGS developed and cross-amplified), 16 unlinked loci showed polymorphism, ranging from 2 to 9 alleles per locus. Test individuals were obtained from the invasive ranges of common myna in South Africa. Overall, expected and observed heterozygosities ranged from 0.089 to 0.802 and from 0.094 to 0.906, respectively. These markers will be used to shed light on invasion genetics and landscape-scale dynamics of invasive A. tristis in South Africa.


Acridotheres tristis Common myna Invasive species Microsatellite 



Thanks to Ron Sinclair for providing the adult Myna (Australia). CBS acknowledges support and funding from Stellenbosch University’s DST-NRF-Centre for Invasion Biology. PC is an ARC Future Fellow. CH receives support from the NRF Incentive Programme and the Subcommittee B at Stellenbosch University.


  1. Allentoft ME, Schuster SC, Holdaway RN, Hale ML, McLay E, Oskam C, Gilbert MTP, Spencer P, Willerslev E, Bunce M (2009) Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data. Biotechniques 46:195–200PubMedCrossRefGoogle Scholar
  2. Brooke RK, Lloyd PH, de Villiers AL (1986) Alien and translocated terrestrial vertebrates in South Africa. In: Macdonald IAW, Kruger FJ, Ferrar AA (eds) The ecology and management of biological invasions in southern Africa. Oxford University Press, Cape Town, pp 63–74Google Scholar
  3. Celis P, Gil D, Graves JA (2007) Isolation and characterization of polymorphic microsatellites isolated from sportless starling (Sturnus unicolor) and cross-species amplification in the European starling (Sturnus vulgaris). Mol Ecol Notes 7:251–253Google Scholar
  4. Dawson DA, Hanotte O, Greig C, Stewart IRK, Burke T (2000) Polymorphic microsatellites in the blue tit Parus caeruleus and their cross-species utility in 20 songbird families. Mol Ecol Notes 9:1941–1944Google Scholar
  5. Dawson DA, Horsburgh GJ, Küpper C, Stewart IRK, Ball AD, Durrant KL, Hansson B, Bacon I, Bird S, Klein A et al (2010) New methods to identify conserved microsatellites loci and develop primer sets of high cross-species utility- as demonstrated for birds. Mol Ecol Res 10:475–794CrossRefGoogle Scholar
  6. del Hoyo J, Elliott A, David C (2009) Handbook of the birds of the world. Bush-shrikes to old world sparrows, vol 14. Barcelona: Lynx Edicions, p 735Google Scholar
  7. Gardner MG, Fitch AJ, Bertozzi T, Lowe AJ (2011) Rise of the machines—recommendations for ecologists when using next generation sequencing for microsatellite development. Mol Ecol Resour. doi: 10.1111/j.1755-0998.2011.03037.x
  8. Guttiérrez JP, Royo LJ, Alvaréz I, Goyache F (2005) MOLKIN v2.0: a computer program for genetic analysis of population using molecular coancestry information. J Hered 96:718–721CrossRefGoogle Scholar
  9. Heather L, Fleischer RC (2010) Prospects for the use of next-generation sequencing methods in ornithology. Auk 127:4–15CrossRefGoogle Scholar
  10. Le Roux JJ, Wieczorek AM (2009) Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 154:1–17CrossRefGoogle Scholar
  11. Li S-H, Huang Y-J, Brown JL (1997) Isolation of tetranucleotide microsatellites from the Mexican jay Aphelocoma ultramarina. Mol Ecol 6:499–501PubMedCrossRefGoogle Scholar
  12. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species. Aliens 12:S1–S12Google Scholar
  13. Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin JF (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403–404PubMedCrossRefGoogle Scholar
  14. Peacock DS, Rensburg BJV, Robertson MP (2007) The distribution and spread of the invasive alien common myna, Acridotheres tristis L. Aves: Sturnidae, in southern Africa. S Afr J Sci 103:465–473Google Scholar
  15. Richardson DS, Jury FL, Dawson DA, Salguiero P, Komdeur J, Burke T (2000) Fifty Seychelles warbler (Acrocephalus sechellensis) microsatellite loci polymorphic in Sylviidae species and their cross-species amplification in other passerine birds. Mol Ecol 9:2226–2231Google Scholar
  16. Rollins LA, Woolnough AP, Wilton AN, Sinclair R, Sherwin WB (2009) Invasive species can’t cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Mol Ecol 18:1560–1573PubMedCrossRefGoogle Scholar
  17. Rousset F, Raymond M (1995) GENEPOP (version 3–4): population genetics software for exact test and ecumenism. J Hered 86:248–259Google Scholar
  18. Rozen S, Skaletsky HJ (1999) Primer3 on the www for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386CrossRefGoogle Scholar
  19. Rubenstein DR (2005) Isolation and characterization of polymorphic microsatellites loci in the plural cooperatively breeding superb starling, Lamprotornis superbus. Mol Ecol Notes 5:739–744CrossRefGoogle Scholar
  20. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellites data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  21. Van Rensburg BJ, Weyl OLF, Davies SJ, van Wilgen LJ, Peacock DS, Spear D, Chimimba CT (2011) In: Pimentel D (ed) Biological invasions: economic and environmental costs of alien plant, animal, and microbe species, 2nd edn. CRC Press, Boca Raton, pp 325–378CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Cécile Berthouly-Salazar
    • 1
  • Phillip Cassey
    • 2
  • Bettine Jansen van Vuuren
    • 3
  • Berndt Janse van Rensburg
    • 4
  • Cang Hui
    • 1
  • Michael G. Gardner
    • 2
    • 5
  • Johannes J. Le Roux
    • 1
  1. 1.DST-NRF Centre of Excellence for Invasion Biology, Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
  2. 2.Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental ScienceUniversity of AdelaideAdelaideAustralia
  3. 3.DST-NRF Centre of Excellence for Invasion Biology, Department of ZoologyUniversity of JohannesburgAuckland ParkSouth Africa
  4. 4.DST-NRF Centre of Excellence for Invasion Biology, Department of Zoology and EntomologyUniversity of PretoriaHatfieldSouth Africa
  5. 5.School of Biological SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations