Conservation Genetics Resources

, Volume 2, Issue 1, pp 101–103 | Cite as

Characterization of 12 polymorphic microsatellite loci in Ifremeria nautilei, a chemoautotrophic gastropod from deep-sea hydrothermal vents

  • Andrew David ThalerEmail author
  • Kevin Zelnio
  • Rebecca Jones
  • Jens Carlsson
  • Cindy Lee Van Dover
  • Thomas F. Schultz
Technical Note


Ifremeria nautilei is deep-sea provannid gastropod endemic to hydrothermal vents at southwest Pacific back-arc spreading centers. Twelve, selectively neutral and unlinked polymorphic microsatellite loci were developed for this species. Three loci deviated significantly from Hardy–Weinberg expectations. Average observed heterozygosity ranged from 0.719 to 0.906 (mean H O  = 0.547, SD = 0.206). Three of the 12 loci cross-amplified in two species of Alviniconcha (Provannidae) that co-occur with I. nautilei at Pacific vent habitats. Microsatellites developed for I. nautilei are being deployed to study connectivity among populations of this species colonizing geographically discrete back-arc basin vent systems.


Back-arc basin Chemoautotrophic Hydrothermal vent Ifremeria nautilei Microsatellite Provannid gastropod 



This research was supported by a research contract from Nautilus Minerals Niugini Limited to CLVD, JC, and TS and by Duke University. JC acknowledges support from the Beaufort Marine Research Award in Fish Population Genetics funded by the Irish Government under the Sea Change Programme. Samples used in this study were collected on behalf of the people of Papua New Guinea.


  1. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9:323CrossRefPubMedGoogle Scholar
  2. Bouchet P, Warén A (1991) Ifremeria nautilei, a new gastropod from hydrothermal vents, probably associated with symbiotic bacteria. C R Acad Sci III 312(10):495–501Google Scholar
  3. Carney SL, Formica MI, Divatia H, Nelson K, Fisher CR, Schaeffer SW (2006) Population structure of the mussel “Bathymodioluschildressi from Gulf of Mexico hydrocarbon seeps. Deep Sea Res I 53(6):1061–1072CrossRefGoogle Scholar
  4. Daguin C, Jollivet D (2005) Development and cross-amplification of nine polymorphic microsatellite markers in the deep-sea hydrothermal vent polychaete Branchipolynoe seepensis. Mol Ecol Notes 5(4):780–783CrossRefGoogle Scholar
  5. Desbruyères D, Hashimoto J, Fabri MC (2006) Composition and biogeography of hydrothermal vent communities in western Pacific back-arc basins. Geophys Monogr 166:215–234Google Scholar
  6. Fusaro AJ, Baco AR, Gerlach G, Shank TM (2008) Development and characterization of 12 microsatellite markers from the deep-sea hydrothermal vent siboglinid Riftia pachyptila. Mol Ecol Res 8(1):132–134CrossRefGoogle Scholar
  7. Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. In: Zimmer EA, Roalson EH (eds) Methods in enzymology 395, molecular evolution: producing the biochemical data, Part B. Academic Press, San Diego, pp 202–222CrossRefGoogle Scholar
  8. Halfar J, Fujita RM (2002) Precautionary management of deep-sea mining. Mar Policy 26(2):103–106CrossRefGoogle Scholar
  9. Hurtado LA, Lutz RA, Vrijenhoek RC (2004) Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents. Mol Ecol 13(9):2603–2615CrossRefPubMedGoogle Scholar
  10. Kojima S, Segawa R, Fijiwara Y, Fujikura K, Ohta S, Hashimoto J (2001) Phylogeny of hydrothermal-vent-endemic gastropods Alviniconcha spp. from the Western Pacific revealed by mitochondrial DNA sequences. Biol Bull 200(3):298–304CrossRefPubMedGoogle Scholar
  11. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43(1):223–225CrossRefGoogle Scholar
  12. Rona PA (2003) Resources of the sea floor. Science 299:673–674CrossRefPubMedGoogle Scholar
  13. Rousset F (2009) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Res 8:103–106CrossRefGoogle Scholar
  14. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  15. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol 18:233–234CrossRefGoogle Scholar
  16. Shank TM, Halanych KM (2007) Toward a mechanistic understanding of larval dispersal: insights from genomic fingerprinting of the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Mar Ecol 28(1):25–35CrossRefGoogle Scholar
  17. Suzuki Y, Kojima S, Watanabe H, Suzuki M, Tsuchida S, Nunoura T, Hirayama H, Takai K, Nealson K, Horikoshi K (2006) Single host and symbiont lineages of hydrothermal-vent gastropods Ifremeria nautilei (Provannidae): biogeography and evolution. Mar Ecol Prog Ser 315:167–175CrossRefGoogle Scholar
  18. Thurston MI, Field D (2005) Msatfinder: detection and characterisation of microsatellites. Distributed by the authors at CEH Oxford, Mansfield Road, Oxford OX1 3SR
  19. Urakawa H, Dubilier N, Fujiwara Y, Cunningham DE, Kojima S, Stahl DA (2005) Hydrothermal vent gastropods from the same family (Provannidae) harbour ε- and γ-proteobacterial endosymbionts. Environ Microbiol 7(5):750–754CrossRefPubMedGoogle Scholar
  20. van Oosterhout C, Hutchinson W, Willds D, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Andrew David Thaler
    • 1
    Email author
  • Kevin Zelnio
    • 1
  • Rebecca Jones
    • 1
  • Jens Carlsson
    • 1
    • 2
  • Cindy Lee Van Dover
    • 1
  • Thomas F. Schultz
    • 1
  1. 1.Marine Conservation Molecular Facility, Marine Laboratory, Nicholas School of the EnvironmentDuke UniversityBeaufortUSA
  2. 2.Department of Zoology, Ecology and Plant ScienceUniversity College CorkCorkIreland

Personalised recommendations