Characterisation of polymorphic microsatellite markers in the widespread Australian seagrass, Posidonia australis Hook. f. (Posidoniaceae), with cross-amplification in the sympatric P. sinuosa

  • E. A. Sinclair
  • J. Anthony
  • G. T. Coupland
  • M. Waycott
  • M. D. Barrett
  • R. L. Barrett
  • M. L. Cambridge
  • M. J. Wallace
  • K. W. Dixon
  • S. L. Krauss
  • G. A. Kendrick
Technical Note

Abstract

We developed 10 polymorphic microsatellite markers in the Australian seagrass Posidonia australis Hook. f. Markers were screened for their ability to detect within- and among-population genetic structure and variation. The markers showed a range in levels of polymorphism from fixed differences between the two sampled seagrass meadows to high levels of heterozygosity. These markers will be used to estimate gene flow across the species range, characterise the mating system through paternity analysis and pollen dispersal, characterise the nature and extent of clonality, and determine the genetic differentiation of local seagrass meadows to provide information on where to source local genetic provenance material for seagrass restoration projects. Seven of the 10 loci also amplified in the sympatric P. sinuosa and will be useful in future studies in population genetics and hybridisation.

Keywords

Posidonia australis Microsatellites Clonal diversity Restoration Cross-species amplification Posidonia sinuosa 

References

  1. Bastyan GR, Cambridge ML (2008) Transplantation as a method for restoring the seagrass Posidonia australis. Estuar Coast Shelf Sci 79:289–299CrossRefGoogle Scholar
  2. Bjork M, Short F, McLeod E, Beer S (2008) Managing seagrasses for resilience to climate change. IUCN, Gland, SwitzerlandGoogle Scholar
  3. Costanza R, d’Arge R, du Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  4. Edgar GJ (2000) Australian marine life; the plants and animals of temperate waters. New Holland Publishers, SydneyGoogle Scholar
  5. Fonseca MS, Julius BE, Kenworthy WJ (2000) Integrating biology and economics in seagrass restoration: How much is enough and why? Ecol Eng 15:227–237CrossRefGoogle Scholar
  6. Fox S, Waycott M, Dunshea G (2007) Isolation and characterisation of polymorphic microsatellite loci in the vulnerable spectacled flying fox, Pteropus conspicillatus. Cons Genet 8:1013–1016CrossRefGoogle Scholar
  7. Gobert S, Cambridge ML, Velimirov B (2006) Biology of Posidonia. In: Larkum AWD, Orth RJ, Duarte CM et al (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 387–408Google Scholar
  8. Hamilton MB, Pincus EL, Di Fiore A, Fleisher RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507PubMedGoogle Scholar
  9. Kendrick GA, Aylward MJ, Hegge BJ et al (2002) Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquat Bot 73:75–87CrossRefGoogle Scholar
  10. Kirkman H (1998) Pilot experiments on planting seedlings and small seagrass propagules in Western Australia. Mar Poll Bull 37:460–467CrossRefGoogle Scholar
  11. Orth RJ, Carruthers TJB, Dennison WC et al (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  12. Paling EI, van Keulen M, Wheeler K, Phillips J, Dyhrberg R (2001) Mechanical seagrass transplantation on Success Bank, Western Australia. Ecol Eng 16:331–339CrossRefGoogle Scholar
  13. Procaccini G, Ruggiero MV, Orsini L (2002) Genetic structure and distribution of microsatellite population genetic diversity in Posidonia oceanica in the Mediterranean basin. Bull Mar Sci 71:1291–1297Google Scholar
  14. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  15. Walker DI, McComb AJ (1992) Seagrass degradation in Australian coastal waters. Mar Poll Bull 25:191–195CrossRefGoogle Scholar
  16. Waycott M (1998) Genetic variation, its assessment and implications to the conservation of seagrasses. Mol Ecol 7:793–800CrossRefGoogle Scholar
  17. Waycott M, Barnes PAG (2001) AFLP diversity within and between populations of the Caribbean seagrass Thalassia testudinum (Hydrocharitaceae). Mar Biol 139:1021–1028CrossRefGoogle Scholar
  18. Waycott M, James SH, Walker DI (1997) Genetic variation within and between populations of Posidonia australis, a hydrophilous, clonal seagrass. Heredity 79:408–417CrossRefGoogle Scholar
  19. Waycott M, Duarte CM, Carruthers T, Orth R, Dennison WC, Olyarnik S, Calladine A, Fourqurean J, Heck K Jr, Hughes R, Kendrick G, Kenworthy W, Short F, Williams S (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • E. A. Sinclair
    • 1
    • 2
  • J. Anthony
    • 1
  • G. T. Coupland
    • 2
  • M. Waycott
    • 3
  • M. D. Barrett
    • 1
    • 2
  • R. L. Barrett
    • 1
    • 2
  • M. L. Cambridge
    • 2
  • M. J. Wallace
    • 1
    • 2
  • K. W. Dixon
    • 1
    • 2
  • S. L. Krauss
    • 1
    • 2
  • G. A. Kendrick
    • 2
  1. 1.Botanic Gardens & Parks AuthorityWest PerthAustralia
  2. 2.School of Plant BiologyUniversity of Western AustraliaCrawleyAustralia
  3. 3.School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia

Personalised recommendations