Skip to main content
Log in

Pt–Pd Bifunctional Catalysts Supported on CeO2/Graphene Oxide for Reinforced Methanol Electro-oxidation

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this work, the CeO2 nanoparticles were dispersed onto the surface of graphene oxide (GO), followed by electrodeposition of Pt–Pd alloy nanoparticles on the CeO2 surface to fabricate Pt–Pd@CeO2/graphene oxide composites (Pt–Pd@CeO2/GO). Morphological investigation was conducted using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results of morphological characterization revealed that CeO2 nanoparticles acted as cores, while Pt–Pd alloy nanoparticles formed shells. The electrocatalytic oxidation performance of Pt–Pd@CeO2/GO composites for methanol electro-oxidation reaction (MOR) was systematically investigated. The mass activity for MOR on Pt1Pd1.3@CeO2/GO electrocatalyst was 1128 mA·mgPt+Pd−1, which was 5.0-fold higher than that of Pt/C catalysts. The synergistic effect between Pt and Pd, along with the active oxygen-containing species of CeO2 effectively enhanced catalytic activity. This work presents a novel approach to developing catalysts with high catalytic performance for MOR.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Q.X. Wu, S.Y. Shen, Y.L. He, T.S. Zhao, Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating with neat methanol. Int. J. Hydrogen Energ. 37, 5958 (2012)

    Article  CAS  Google Scholar 

  2. Z.Y. Shih, C.W. Wang, G.B. Xu, H.T. Chang, Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells. J. Mater. Chem. A 1, 4773 (2013)

    Article  CAS  Google Scholar 

  3. J.M. Sieben, M.M.E. Duarte, C.E. Mayer, Supported Pt and Pt–Ru catalysts prepared by potentiostatic electrodeposition for methanol electrooxidation. J. Appl. Electrochem. 38(4), 483–490 (2007)

    Article  Google Scholar 

  4. B. Qiao, J. Liu, Y.G. Wang, Q. Lin, X. Liu, A. Wang, J.J. Liu, Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 5(11), 6249–6254 (2015)

    Article  CAS  Google Scholar 

  5. E. Reddington, Combinatorial electrochemistry: a highly parallel, optical screening Method for discovery of better electrocatalysts. Science 280(5370), 1735–1737 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. T. Iwasita, Electrocatalysis of methanol oxidation. Electrochim. Acta 47, 3663–3674 (2002)

    Article  CAS  Google Scholar 

  7. T.R. Ralph, M.P. Hogarth, Catalysis for low temperature fuel cells. Platinum Met. Rev. 46(3), 117–135 (2002)

    Article  CAS  Google Scholar 

  8. J.H. Myung, D. Neagu, D.N. Miller, J.T.S. Irvine, Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107), 63–66 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. Y.Y.J. Tong, H.S. Kim, P.K. Babu, P. Waszczuk, A. Wieckowski, E. Oldfield, An NMR investigation of Co tolerance in a Pt/Ru fuel cell catalyst. J. Am. Chem. Soc. 124, 468–473 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Q. Li, X. Wen, G. Wu, H.T. Chung, R. Gao, P. Zelenay, High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells. Angew. Chem. Int. Ed. 54, 7524–7528 (2015)

    Article  CAS  Google Scholar 

  12. Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. B. Fang, N.K. Chaudhari, M.S. Kim, J.H. Kim, J.S. Yu, Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell. J. Am. Chem. Soc. 131, 15330–15338 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. L. Zhang, L.T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S.I. Choi, J. Park, J.A. Herron, Z.Y. Xie, Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. B. Lim, M.J.P. Jiang, E.C. Cho, J. Tao, X.M. Lu, Y.M. Zhu, Y.N. Xia, Pd−Pt Bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. K.D. Gilroy, A. Ruditskiy, H.C. Peng, D. Qin, Y. Xia, Bimetallic nanocrystals: syntheses, properties, and applications. Chem. Rev. 116, 10414–10472 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. W. Wang, X. Zhang, Y. Zhang, X. Chen, J. Ye, J. Chen, Z. Xie, Edge enrichment of ultrathin 2D PdPtCu trimetallic nanostructures effectuates top-ranked ethanol electrooxidation. Nano Lett. 20(7), 5458–5464 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. K. Wang, F. Wang, Y. Zhao, W. Zhang, Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell. J. Energy Chem. 64, 601–610 (2020)

    Google Scholar 

  19. S. Zhou, R. Yan, W. Zhou, Synthesis of Cu@Pt-Pd ternary metallic composites for efficient electrocatalysis of methanol. Adv. Mater. Interfaces 9(24), 2200761 (2022)

    Article  CAS  Google Scholar 

  20. H.J. Huang, D. Xiao, Z.H. Zhu, C. Zhang, L. Yang, H.Y. He, J. You, Q.G. Jiang, X.T. Xu, Y. Yamauchi, A 2D/2D heterojunction of ultrathin Pd nanosheet/MXene towards highly efficient methanol oxidation reaction: the significance of 2D material nanoarchitectonics. Chem. Sci. 14(36), 9854–9862 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. H.J. Huang, Y.J. Wei, Y. Yang, M.M. Yan, H.Y. He, Q.G. Jiang, X.F. YANG, J.X. Zhu, Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J. Energy. Che. 57, 601–609 (2021)

    Article  CAS  Google Scholar 

  22. S.C. Li, W.J. Huang, H.M. Xu, K. Liu, J.N. Wang, Y.N. Sun, Z. Qu, N.Q. Yan, Enhanced simultaneous absorption of NOx and SO2 in oxidation-reduction-absorption process with a compounded system based on Na2SO3. J. Environ. Sci. 111, 1–10 (2022)

    Article  CAS  Google Scholar 

  23. Z. Peng, H. Yang, Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 131(22), 7542–7543 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. J. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. 117(14), 2170–2173 (2005)

    Article  Google Scholar 

  25. H. Wang, C. Xu, F. Cheng, M. Zhang, S. Wang, S.P. Jiang, Pd/Pt core–shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochem. Commun. 10(10), 1575–1578 (2008)

    Article  CAS  Google Scholar 

  26. H. Li, G. Sun, N. Li, S. Sun, D. Su, Q. Xin, Design and preparation of highly active Pt−Pd/C catalyst for the oxygen reduction reaction. The Journal of Physical Chemistry C 111(15), 5605–5617 (2007)

    Article  CAS  Google Scholar 

  27. Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. 119(22), 4138–4141 (2007)

    Article  Google Scholar 

  28. H. Zhang, Y. Yin, Y. Hu, C. Li, P. Wu, S. Wei, C. Cai, Pd@Pt core−shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation. The Journal of Physical Chemistry C 114(27), 11861–11867 (2010)

    Article  CAS  Google Scholar 

  29. S.H. Chang, W.N. Su, M.H. Yeh, C.J. Pan, K.L. Yu, D.G. Liu, B.J. Hwang, Structural and electronic effects of carbon-supported PtxPd1−x nanoparticles on the electrocatalytic activity of the oxygen-reduction reaction and on methanol tolerance. Chem. Eur. J. 16(36), 11064–11071 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. C.Z. Yang, Q.G. Jiang, H. Liu, L. Yang, H.Y. He, H.J. Huang, W.H. Li, Pt-on-Pd bimetallic nanodendrites stereoassembled on MXene nanosheets for use as high-efficiency electrocatalysts toward the methanol oxidation reaction. Journal of Materials Chemistry A 27(9), 15432–15440 (2021)

    Article  Google Scholar 

  31. J. Zhang, X. Ju, Z.Y. Wu, T. Liu, T.D. Hu, Y.N. Xie, Z.L. Zhang, Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion method. Chem. Mater. 13(11), 4192–4197 (2001)

    Article  CAS  Google Scholar 

  32. G. Balducci, M.S. Islam, J. Kašpar, P. Fornasiero, M. Graziani, Bulk reduction and oxygen migration in the ceria-based oxides. Chem. Mater. 12(3), 677–681 (2000)

    Article  CAS  Google Scholar 

  33. T.X.T. Sayle, S.C. Parker, D.C. Sayle, Shape of CeO2 nanoparticles using simulated amorphisation and recrystallisation. Chem. Commun. 21, 2438 (2004)

    Article  Google Scholar 

  34. Z.L. Wang, X.D. Feng, Polyhedral shapes of CeO2 nanoparticles. J. Phys. Chem. B 107, 13563–13566 (2003)

    Article  CAS  Google Scholar 

  35. A. Trovarelli, Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews 38(4), 439–520 (1996)

    Article  CAS  Google Scholar 

  36. A. Laachir, V. Perrichon, A. Badri, J. Lamotte, E. Catherine, J.C. Lavalley, J.E. Fallah, L. Hilaire, F.L. Normand, E. Quémére, Reduction of CeO, by hydrogen magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. J. Chem. Soc. Faraday Trans. ns. 87, 1601–1609 (1991)

    Article  CAS  Google Scholar 

  37. A. Satsuma, K. Osaki, M. Yanagihara, J. Ohyama, K. Shimizu, Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts. Appl. Catal. B 132–133, 511–518 (2013)

    Article  Google Scholar 

  38. W. Li, Q. Wang, L. Wang, X. Fu, J. Luo, Mesoporous CeO2-C hybrid spheres as efficient support for platinum nanoparticles towards methanol electrocatalytic oxidation. J. Rare Earths 39(6), 674–681 (2021)

    Article  CAS  Google Scholar 

  39. L. Li, Y. Qian, J. Yang, X. Tan, Z. Dai, Y. Jin, Y. Chu, A novel structural design of hybrid nanotube with CNTs and CeO2 supported Pt nanoparticles with improved performance for methanol electro-oxidation. Int. J. Hydrogen Energy 41(22), 9284–9294 (2016)

    Article  CAS  Google Scholar 

  40. Y. Zhou, Y. Gao, Y. Liu, J. Liu, High efficiency Pt-CeO2/carbon nanotubes hybrid composite as an anode electrocatalyst for direct methanol fuel cells. J. Power. Sources 195, 1605–1609 (2010)

    Article  CAS  Google Scholar 

  41. X. Cui, S. Wu, S. Jungwirth, Z. Chen, Z. Wang, L. Wang, Y. Li, The deposition of Au–Pt core–shell nanoparticles on reduced graphene oxide and their catalytic activity. Nanotechnology 24(29), 295402 (2013)

    Article  PubMed  Google Scholar 

  42. Y. Li, S. Wu, X. Cui, L. Wang, X. Shi, Ultralow platinum-loading bimetallic nanoflowers: Fabrication and high-performance electrocatalytic activity towards the oxidation of formic acid. Electrochem. Commun. 25, 19–22 (2012)

    Article  Google Scholar 

  43. D. Wang, H. Hua, Y. Liu, H.H. Tang, Y. Li, Single Ag nanowire electrodes and single Pt@Ag nanowire electrodes: fabrication, electrocatalysis and SERS applications. Anal. Chem. 91, 4291 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. Y. Yang, L.M. Luo, Y.F. Guo, Z.X. Dai, R.H. Zhang, C. Sun, X.W. Zhou, In situ synthesis of PtPd bimetallic nanocatalysts supported on graphene nanosheets for methanol oxidation using triblock copolymer as reducer and stabilizer. J. Electroanal. Chem. 783, 132–139 (2016)

    Article  CAS  Google Scholar 

  45. S. Guo, S. Dong, E. Wang, Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4(1), 547–555 (2009)

    Article  Google Scholar 

  46. V. Comignani, J.M. Sieben, M.E. Brigante, M.M.E. Duarte, Manganese (II, III) oxide-activated carbon black supported PtRu nanoparticles for methanol electrooxidation in acid medium. ChemElectroChem 5(15), 2118–2125 (2018)

    Article  CAS  Google Scholar 

  47. J. Qi, L. Xin, D.J. Chadderdon, Y. Qiu, Y. Jiang, N. Benipal, W. Li, Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration. Appl. Catal. B 154–155, 360–368 (2014)

    Article  Google Scholar 

  48. Y.Y. Zhou, C.H. Liu, J. Liu, X.L. Cai, Y. Lu, H. Zhang, S.D. Wang, Self-decoration of PtNi alloy nanoparticles on multiwalled carbon nanotubes for highly efficient methanol electro-oxidation. Nano-Micro Letters 8(4), 371–380 (2016)

    Article  PubMed  Google Scholar 

  49. X. Cui, S. Wu, Y. Li, G. Wan, Sensing hydrogen peroxide using a glassy carbon electrode modified with in-situ electro-deposited platinum-gold bimetallic nanoclusters on a graphene surface. Mikrochim. Acta 182, 265–272 (2015)

    Article  CAS  Google Scholar 

  50. D. Bouša, J. Luxa, V. Mazánek, O. Jankovský, D. Sedmidubský, K. Klímová, Z. Sofer, Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Adv. 6(71), 66884–66892 (2016)

    Article  Google Scholar 

  51. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  PubMed  Google Scholar 

  52. M.F.R. Hanifah, J. Jaafar, M.H.D. Othman, A.F. Ismail, M.A. Rahman, N. Yusof, W.N.W. Salleh, F. Aziz, A.A.Z. Ajid, Advanced ternary RGO/bimetallic Pt-Pd alloy/CeO2 nanocomposite electrocatalyst by one-step hydrothermal-assisted formic acid reduction reaction for methanol electrooxidation. J. Environ. Chem. Eng. 9(1), 104991 (2021)

  53. M.A. Alvi, M.S. Akhtar, An effective and low cost Pd-Ce bimetallic decorated carbon nanofibers as electrocatalyst for direct methanol fuel cells applications. J. Alloy. Compd. 684, 524–529 (2016)

    Article  CAS  Google Scholar 

  54. R. Verma, S.K. Samdarshi, In-situ decorated optimized CeO2 on reduced graphene oxide with enhanced absorptivity and visible light photo catalytic stability and reusability. J. Phys. Chem. C 120(39), 22281–22290 (2016)

    Article  CAS  Google Scholar 

  55. Y.H. Zhou, Z. Zhang, S. Wang, N. Williams, Y. Cheng, S. Luo, J. Gu, rGO supported PdNi-CeO2 nanocomposite as an efficient catalyst for hydrogen evolution from the hydrolysis of NH3BH3. Int. J. Hydrogen Energy 43, 18745–18753 (2018)

    Article  CAS  Google Scholar 

  56. F. Altaf, R. Batool, Z.U. Rehman, K. Jacob, Synthesis and performance study of Pd/CeO2 composite catalyst for enhanced MOR activity. J. Electron. Mater. 50(12), 7222–7229 (2021)

    Article  CAS  Google Scholar 

  57. L. Xu, Q. Cui, H. Zhang, A. Jiao, Y. Tian, S. Li, F. Chen, Ultra-clean PtPd nanoflowers loaded on GO supports with enhanced low-temperature electrocatalytic activity for fuel cells in harsh environment. Appl. Surf. Sci. 511, 145603 (2020)

    Article  CAS  Google Scholar 

  58. Y. Feng, H. Hu, G. Song, Promotion effects of CeO2 with different morphologies to Pt catalyst toward methanol electrooxidation reaction. J. Alloy. Compd. 798, 706–713 (2019)

    Article  CAS  Google Scholar 

  59. L. Mpeta, S. Gwebu, O. Arotiba, Methanol oxidation in alkaline media with Pt-Au/fMWCNTs and Pt-Pd/fMWCNTs electrocatalysts on an exfoliated graphite electrode. Electrocatalysis 10, 672–679 (2019)

    Article  CAS  Google Scholar 

  60. X. Qi, N. Ye, R. Zhang, Z. Jiang, T. Fang, Boosting the activity and CO tolerance for methanol oxidation reaction in alkaline media by constructing the Pt-TMNs electrocatalysts. Fuel 350, 128773 (2023)

    Article  CAS  Google Scholar 

  61. G. Girishkumar, T. Hall, K. Vinodgopal, Single wall carbon nanotube supports for portable direct methanol fuel cells. J. Phys. Chem. B 110(1), 107–114 (2006)

    Article  CAS  PubMed  Google Scholar 

  62. L. Yu, J. Xi, CeO2 nanoparticles improved Pt-based catalysts for direct alcohol fuel cells. Int. J. Hydrogen Energy 37(21), 15938–15947 (2012)

    Article  CAS  Google Scholar 

  63. S. Park, H. Jung, S. Um, Y. Song, H. Kim, Rapid synthesis of Pt-based alloy/carbon nanotube catalysts for a direct methanol fuel cell using flash light irradiation. Int. J. Hydrogen Energy 37(17), 12597–12604 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of Anhui Province (Grant No. 1808085ME157).

Author information

Authors and Affiliations

Authors

Contributions

Qun Xiang and Yizhong Wang synthesized the material. Qun Xiang, Shuang Wang and Xucheng Fu characterized the structure of the material. Guiqi Gao and Ruiwen Yan tested the properties of the material Ruiwen Yan wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ruiwen Yan.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 883 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Q., Wang, Y., Wang, S. et al. Pt–Pd Bifunctional Catalysts Supported on CeO2/Graphene Oxide for Reinforced Methanol Electro-oxidation. Electrocatalysis (2024). https://doi.org/10.1007/s12678-024-00875-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12678-024-00875-w

Keywords

Navigation