Skip to main content
Log in

OH-Functionalized N-Doped Graphene Quantum Dots as an Efficient Metal-Free Catalysts for Oxygen Reduction Reaction in PEMFCs

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Utilizing the density functional theory (DFT) method, we investigated the catalytic activity of N-doped graphene quantum dots (NGQDs) with nitrogen (N) atoms strategically doped at various active sites on the surface. We focused on exploring their efficiency in the 2e and 4e reduction pathways for oxygen reduction reaction (ORR). By introducing N-doping at the central benzene ring of carbon-based materials, we observed the formation of localized π-orbitals, significantly enhancing their electrocatalytic activity. In comparison to other reported catalysts, our N-doped GQD metal-free electrocatalyst displayed remarkable adsorption capability. Furthermore, we introduced the hydroxyl group (OH) into the functionalized N-doped GQDs, which further improved electrocatalytic performance. This enhancement was attributed to the decreased HOMO–LUMO energy gap and increased chemical reactivity. The calculated free energy (ΔG) values for each elementary reaction step in the 4e reduction pathway were highly favorable and indicated the feasibility of the process. Our findings indicate that N-doped GQDs exhibit exceptional activity for the ORR, positioning them as promising carbon-based metal-free electrocatalysts. Consequently, they hold significant potential as an alternative to noble metal-based catalysts in proton exchange membrane fuel cells (PEMFCs) and metal-air batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. M.H. Seo, D. Higgins, G. Jiang, S.M. Choi, B. Han, Z. Chen, Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for oxygen reduction reactions. J. Mater. Chem. A. 2(46), 19707–19716 (2014)

    Article  CAS  Google Scholar 

  2. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. L. Qu, Y. Liu, J.B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano. 4(3), 1321–1326 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. C. Chowdhury, A. Datta, Silicon-doped nitrogen-coordinated graphene as electrocatalyst for oxygen reduction reaction. J. Phys. Chem. C. 122(48), 27233–27240 (2018)

    Article  CAS  Google Scholar 

  5. M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. D. Liu, L. Tao, D. Yan, Y. Zou, S. Wang, Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. ChemElectroChem. 5(14), 1775–1785 (2018)

    Article  CAS  Google Scholar 

  7. Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. L.Y. Feng, Y.J. Liu, J.X. Zhao, Iron-embedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (ORR): a density functional theory (DFT) study. J. Power. Sources 287, 431–438 (2015)

    Article  CAS  Google Scholar 

  9. Q. Wei, X. Tong, G. Zhang, J. Qiao, Q. Gong, S. Sun, Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts. 5(3), 1574–1602 (2015)

    Article  CAS  Google Scholar 

  10. T. Thiruppathiraja, P.N. Senthan, S. Lakshmipathi, DFT study on a fluorine-functionalized nitrogen-and boron-doped triangulene as an electrocatalyst for the oxygen reduction reaction. Sustain. Energy. Fuels. 7(13), 3088–3095 (2023)

    Article  CAS  Google Scholar 

  11. M. Kiani, J. Zhang, J. Chen, Y. Luo, Y. Chen, J. Fan, G. Wang, R. Wang, Facile synthesis of magnesium ferrite nanoparticles supported on nitrogen and sulfur co-doped carbon black as an efficient electrocatalyst for oxygen reduction reaction. J. Nanopart. Res. 21, 1–12 (2019)

    Article  CAS  Google Scholar 

  12. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X.A. Chen, S. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1), 205–211 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. P. Chandran, A. Ghosh, S. Ramaprabhu, High-performance platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell. Sci. Rep. 8(1), 3591 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  14. W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth-abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 55(8), 2650–2676 (2016)

    Article  CAS  Google Scholar 

  15. F. Li, H. Shu, C. Hu, Z. Shi, X. Liu, P. Liang, X. Chen, Atomic mechanism of electrocatalytically active Co–N complexes in graphene basal plane for oxygen reduction reaction. ACS Appl. Mater. Interf. 7(49), 27405–27413 (2015)

    Article  CAS  Google Scholar 

  16. P. Rao, D. Wu, J. Luo, J. Li, P. Deng, Y. Shen, X. Tian, A plasma bombing strategy to synthesize high-loading single-atom catalysts for oxygen reduction reaction. Cell. Rep. Phys. Sci. 3(5)(2022)

  17. Y. Yu, P. Rao, S. Feng, M. Chen, P. Deng, J. Li, Z. Miao, Z. Kang, Y. Shen, X. Tian, Atomic co clusters for efficient oxygen reduction reaction. Acta. Phys. Chim. Sin. 39, 2210039 (2023)

    Google Scholar 

  18. P. Rao, T.J. Wang, J. Li, P.L. Deng, Y.J. Shen, Y. Chen, X.L. Tian, Plasma induced Fe-NX active sites to improve the oxygen reduction reaction performance. Adv. Sens. Energy. Mater. 1(1)(2022)

  19. L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1(11), 1–12 (2016)

    Article  Google Scholar 

  21. Z. Wang, R. Jia, J. Zheng, J. Zhao, L. Li, J. Song, Z. Zhu, Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells. ACS Nano. 5(3), 1677–1684 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. S. Ratso, I. Kruusenberg, M. Vikkisk, U. Joost, E. Shulga, I. Kink, T. Kallio, K. Tammeveski, Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon. 73, 361–370 (2014)

    Article  CAS  Google Scholar 

  23. D. Higgins, P. Zamani, A. Yu, Z. Chen, The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ. Sci. 9(2), 357–390 (2016)

    Article  CAS  Google Scholar 

  24. M. Reda, H.A. Hansen, T. Vegge, DFT study of stabilization effects on N-doped graphene for ORR catalysis. Catal. Today 312, 118–125 (2018)

    Article  CAS  Google Scholar 

  25. S. Kattel, P. Atanassov, B. Kiefer, Density functional theory study of the oxygen reduction reaction mechanism in a BN co-doped graphene electrocatalyst. J. Mater. Chem. A. 2(26), 10273–10279 (2014)

    Article  CAS  Google Scholar 

  26. A. Ferre-Vilaplana, E. Herrero, Why nitrogen favors oxygen reduction on graphitic materials. Sustain. Energy. Fuels. 3(9), 2391–2398 (2019)

    Article  CAS  Google Scholar 

  27. T. Liu, X. Hao, J. Liu, P. Zhang, J. Chang, H. Shang, X. Liu, Graphdiyne and nitrogen-doped graphdiyne nanotubes as highly efficient electrocatalysts for oxygen reduction reaction. Int. J. Mol. Sci. 24(23), 16813 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Chen, Y. Ping, Y. Li, T. Cheng, Insights into the pH-dependent behavior of N-doped carbons for the oxygen reduction reaction by first-principles calculations. J. Phys. Chem. C. 125(48), 26429–26436 (2021)

    Article  CAS  Google Scholar 

  29. Y. Gao, Z. Cai, X. Wu, Z. Lv, P. Wu, C. Cai, Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal. 8(11), 10364–10374 (2018)

    Article  CAS  Google Scholar 

  30. T. Thiruppathiraja, A.L. Arokiyanathan, B. Aazaad, R. Silviya, S. Lakshmipathi, H, OH and COOH functionalized magnesium phthalocyanine as a catalyst for oxygen reduction reaction  (ORR)–a DFT study. Int. J. Hydro. Energy. 45(15), 8540–8548 (2020)

    Article  CAS  Google Scholar 

  31. Z. Zhang, S. Yang, M. Dou, H. Liu, L. Gu, F. Wang, Systematic study of transition-metal (Fe Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Adv. 6(71), 67049–67056 (2016)

    Article  CAS  Google Scholar 

  32. B. Modak, K. Srinivasu, S.K. Ghosh, Exploring metal decorated porphyrin-like porous fullerene as catalyst for oxygen reduction reaction: a DFT study. Int. J. Hydro. Energy. 42(4), 2278–2287 (2017)

    Article  CAS  Google Scholar 

  33. H. Tan, Y. Li, J. Kim, T. Takei, Z. Wang, X. Xu, J. Wang, Y. Bando, Y.M. Kang, J. Tang, Y. Yamauchi, Sub-50 nm iron–nitrogen-doped hollow carbon sphere-encapsulated iron carbide nanoparticles as efficient oxygen reduction catalysts. Adv. Sci. 5(7), 1800120 (2018)

    Article  Google Scholar 

  34. G. Fazio, L. Ferrighi, C. Di Valentin, Boron-doped graphene as active electrocatalyst for oxygen reduction reaction at a fuel-cell cathode. J. Catal. 318, 203–210 (2014)

    Article  CAS  Google Scholar 

  35. X. Zou, L. Wang, B.I. Yakobson, Mechanisms of the oxygen reduction reaction on B-and/or N-doped carbon nanomaterials with curvature and edge effects. Nanoscale 10(3), 1129–1134 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N. Rao, Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv. Mater. 21(46), 4726–4730 (2009)

    Article  CAS  Google Scholar 

  37. T. Van Tam, S.G. Kang, K.F. Babu, E.S. Oh, S.G. Lee, W.M. Choi, Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A. 5(21), 10537–10543 (2017)

    Article  Google Scholar 

  38. J. Zhang, Z. Wang, Z. Zhu, A density functional theory study on oxygen reduction reaction on nitrogen-doped graphene. J. Mol. Model. 19, 5515–5521 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. T. Thiruppathiraja, A.L. Arokiyanathan, S. Lakshmipathi, Pyrrolic, pyridinic, and graphitic sumanene as metal-free catalyst for oxygen reduction reaction–a density functional theory study. Fuel Cells. 21(6), 490–501 (2021)

    Article  CAS  Google Scholar 

  40. R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, G. Zhang, Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale 6(19), 11336–11343 (2014)

    Article  CAS  PubMed  Google Scholar 

  41. C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 25(35), 4932–4937 (2013)

    Article  CAS  PubMed  Google Scholar 

  42. P. Zhang, Q. Hu, X. Yang, X. Hou, J. Mi, L. Liu, M. Dong, Size effect of oxygen reduction reaction on nitrogen-doped graphene quantum dots. RSC Adv. 8(1), 531–536 (2018)

    Article  CAS  Google Scholar 

  43. C. Xia, J. Feng, C. Ma, H. Xi, N. Song, H. Dong, L. Yu, L. Dong, Exploring the underlying oxygen reduction reaction electrocatalytic activities of pyridinic-N and pyrrolic-N doped graphene quantum dots. Mol. Catal. 535(2023)

  44. A.D. Becke, Density functional thermochemistry. III. the role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993)

    Article  CAS  Google Scholar 

  45. P.C. Hariharan, J.A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies. Theoret. Chim. Acta 28, 213–222 (1973)

    Article  CAS  Google Scholar 

  46. MJ Frisch GW Trucks HB Schlegel GE Scuseria MA Robb JR Cheeseman G Scalmani V Barone B Mennucci GA Petersson H Nakatsuji Gaussian 09. 2009 Gaussian Inc Wallingford CT USA

  47. T.V. Pham, J.G. Kim, J.Y. Jung, J.H. Kim, H. Cho, T.H. Seo, H. Lee, N.D. Kim, M.J. Kim, High areal capacitance of N-doped graphene synthesized by arc discharge. Adv. Func. Mater. 29(48), 1905511 (2019)

    Article  CAS  Google Scholar 

  48. S. Armaković, S.J. Armaković, J.P. Šetrajčić, V. Holodkov, Aromaticity, response, and nonlinear optical properties of sumanene modified with boron and nitrogen atoms. J. Mol. Model. 20, 1–13 (2014)

    Article  Google Scholar 

  49. M. Cheviri, S. Lakshmipathi, Nitrogen-doped buckybowls as potential scaffold material for lithium-sulfur battery: a DFT study. Electrocatalysis 12(6), 678–690 (2021)

    Article  CAS  Google Scholar 

  50. J.G. Manjunatha, M. Deraman, N.H. Basri, N.S. Nor, I.A. Talib, N. Ataollahi, Sodium dodecyl sulfate modified carbon nanotubes paste electrode as a novel sensor for the simultaneous determination of dopamine, ascorbic acid, and uric acid. C. R. Chim. 17(5), 465–476 (2014)

    Article  CAS  Google Scholar 

  51. F. Liu, G. Zhu, D. Yang, D. Jia, F. Jin, W. Wang, Systematic exploration of N, C configurational effects on the ORR performance of Fe–N doped graphene catalysts based on DFT calculations. RSC Adv. 9(39), 22656–22667 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. X. Hu, Y. Wu, H. Li, Z. Zhang, Adsorption and activation of O2 on nitrogen-doped carbon nanotubes. J. Phys. Chem. C. 114(21), 9603–9607 (2010)

    Article  CAS  Google Scholar 

  53. L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C. 115(22), 11170–11176 (2011)

    Article  CAS  Google Scholar 

  54. Y. Li, H. Shu, X. Niu, J. Wang, Electronic and optical properties of edge-functionalized graphene quantum dots and the underlying mechanism. J. Phys. Chem. C. 119(44), 24950–24957 (2015)

    Article  CAS  Google Scholar 

  55. V. Sharma, B. Roondhe, S. Saxena, A. Shukla, Role of functionalized graphene quantum dots in hydrogen evolution reaction: a density functional theory study. Int. J. Hydro. Energy. 47(99), 41748–41758 (2022)

    Article  CAS  Google Scholar 

  56. Y. Meng, X. Qu, K. Li, Y. Yang, Y. Wang, Z. Wu, Rhodium and nitrogen codoped graphene as a bifunctional electrocatalyst for the oxygen reduction reaction and CO2 reduction reaction: mechanism insights. J. Phys. Chem. C. 123(9), 5176–5187 (2019)

    Article  CAS  Google Scholar 

  57. Z. Duan, G. Wang, A first principles study of oxygen reduction reaction on a Pt (111) surface modified by a subsurface transition metal M (M= Ni Co, or Fe). Phys. Chem. Chem. Phys. 13(45), 20178–20187 (2011)

    Article  CAS  PubMed  Google Scholar 

  58. J. Zhang, Z. Wang, Z. Zhu, The inherent kinetic electrochemical reduction of oxygen into H2O on FeN4-carbon: a density functional theory study. J. Power. Sources 255, 65–69 (2014)

    Article  CAS  Google Scholar 

  59. X. Chen, F. Li, X. Wang, S. Sun, D. Xia, Density functional theory study of the oxygen reduction reaction on a cobalt–polypyrrole composite catalyst. J. Phys. Chem. C. 116(23), 12553–12558 (2012)

    Article  CAS  Google Scholar 

  60. X. Sun, K. Li, C. Yin, Y. Wang, F. He, X. Bai, H. Tang, Z. Wu, The oxygen reduction reaction mechanism on Sn doped graphene as an electrocatalyst in fuel cells: a DFT study. RSC Adv. 7(2), 729–734 (2017)

    Article  CAS  Google Scholar 

  61. S. Sun, N. Jiang, D. Xia, Density functional theory study of the oxygen reduction reaction on metalloporphyrins and metallophthalocyanines. J. Phys. Chem. C. 115(19), 9511–9517 (2011)

    Article  CAS  Google Scholar 

  62. J. Zhao, Z. Chen, Carbon-doped boron nitride nanosheet: an efficient metal-free electrocatalyst for the oxygen reduction reaction. J. Phys. Chem. C. 119(47), 26348–26354 (2015)

    Article  CAS  Google Scholar 

  63. X. Bai, E. Zhao, K. Li, Y. Wang, M. Jiao, F. He, X. Sun, H. Sun, Z. Wu, Theoretical insights on the reaction pathways for oxygen reduction reaction on phosphorus doped graphene. Carbon 105, 214–223 (2016)

    Article  CAS  Google Scholar 

  64. B. Qin, Y. Tian, P. Zhang, Z. Yang, G. Zhang, Z. Cai, Y. Li, A density functional theory study of the oxygen reduction reaction on the (111) and (100) surfaces of cobalt(II) oxide. Prog. React. Kinet. Mech. 44(2), 122–131 (2019)

    Article  CAS  Google Scholar 

  65. Y. Yang, K. Li, Y. Meng, Y. Wang, Z. Wu, A density functional study on the oxygen reduction reaction mechanism on FeN2-doped graphene. New J. Chem. 42(9), 6873–6879 (2018)

    Article  CAS  Google Scholar 

  66. P. Zhang, B.B. Xiao, X.L. Hou, Y.F. Zhu, Q. Jiang, Layered SiC sheets: a potential catalyst for oxygen reduction reaction. Sci. Rep. 4(1), 3821 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. A.M. Priya, L. Senthilkumar, P. Kolandaivel, Hydrogen-bonded complexes of serotonin with methanol and ethanol: a DFT study. Struct. Chem. 25, 139–157 (2014)

    Article  CAS  Google Scholar 

  68. L. Wang, H. Dong, Z. Guo, L. Zhang, T. Hou, Y. Li, Potential application of novel boron-doped graphene nanoribbon as oxygen reduction reaction catalyst. J. Phys. Chem. C. 120(31), 17427–17434 (2016)

    Article  CAS  Google Scholar 

  69. D.Y. Shin, Y.J. Shin, M.S. Kim, J.A. Kwon, D.H. Lim, Density functional theory–based design of a Pt-skinned PtNi catalyst for the oxygen reduction reaction in fuel cells. Appl. Surf. Sci. 565, 150518 (2021)

    Article  CAS  Google Scholar 

  70. K. Li, Y. Li, Y. Wang, F. He, M. Jiao, H. Tang, Z. Wu, The oxygen reduction reaction on Pt (111) and Pt (100) surfaces substituted by subsurface Cu: a theoretical perspective. J. Mater. Chem. A. 3(21), 11444–11452 (2015)

    Article  CAS  Google Scholar 

  71. R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang, G. Shan, M. Yang, J. Wang, A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. Comput. Mater. 5(1), 78 (2019)

    Article  Google Scholar 

  72. W.A. Saidi, Oxygen reduction electrocatalysis using N-doped graphene quantum-dots. J. Phys. Chem. Lett. 4(23), 4160–4165 (2013)

    Article  CAS  Google Scholar 

  73. M. Li, L. Zhang, Q. Xu, J. Niu, Z. Xia, N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: theoretical considerations. J. Catal. 314, 66–72 (2014)

    Article  CAS  Google Scholar 

  74. D. Chanda, A.S. Dobrota, J. Hnát, Z. Sofer, I.A. Pašti, N.V. Skorodumova, M. Paidar, K. Bouzek, Investigation of electrocatalytic activity on a N-doped reduced graphene oxide surface for the oxygen reduction reaction in an alkaline medium. Int. J. Hydro. Energy. 43(27), 12129–12139 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The Department of Science and Technology, New Delhi, India, provided financial support (DST-PURSE (II) Fellowship/2020/407).

Author information

Authors and Affiliations

Authors

Contributions

Thangaraj Thiruppathiraja: Methodology, Software, Data curation, Formal analysis, Writing—original draft. Senthilkumar Lakshmipathi: Methodology, Software, Data curation, Formal analysis, review & editing.

Corresponding author

Correspondence to Senthilkumar Lakshmipathi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10990 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiruppathiraja, T., Lakshmipathi, S. OH-Functionalized N-Doped Graphene Quantum Dots as an Efficient Metal-Free Catalysts for Oxygen Reduction Reaction in PEMFCs. Electrocatalysis (2024). https://doi.org/10.1007/s12678-024-00869-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12678-024-00869-8

Keywords

Navigation