Skip to main content
Log in

Enhancing the Performance of Nanocrystalline TiO2 Dye-Sensitized Solar Cells with Phenothiazine-Doped Blended Solid Polymer Electrolyte

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Herein, we present a novel blended solid polymer electrolyte system composed of polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP) and polymethyl methacrylate (PMMA) with the addition of phenothiazine (PZ) as an additive and iodide/triiodide (I-/I3-) as a redox couple in nanocrystalline TiO2 dye-sensitized solar cells (DSSCs). The characterization of the blended solid polymer electrolyte was conducted using techniques such as XRD, FTIR, SEM, and current-voltage (I-V) measurements. Our analyses revealed a decrease in the degree of crystallinity in PVDF-co-HFP/PMMA-based blended solid polymer electrolytes due to the incorporation of PZ, as observed through XRD, FTIR, and SEM. The electrical conductivity of the optimized solid polymer electrolyte film was determined using complex impedance spectroscopy, showing a maximum ionic conductivity value of 3.2 × 10-7 Scm-1 at ambient temperature (298 K). DSSCs based on nanocrystalline TiO2 were fabricated, and the cell parameters, including short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (ff), and photovoltaic energy conversion efficiency (η), were evaluated. The DSSC fabricated with the polymer electrolyte exhibited values of 9.3 mA/cm2, 800 mV, 0.56, and 5.2% for Jsc, Voc, ff, and η, respectively, under 80 mW/cm2 at AM 1.5 simulated solar irradiation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Longo, M.A. De Paoli, Dye-sensitized solar cells: a successful combination of materials. J. Braz. Chem. Soc. 14(6), 889–901 (2003)

    Article  CAS  Google Scholar 

  2. J.A. Anta, E. Guillen, R.T. Zaera, ZnO-based dye-sensitized solar cells. J. Phys. Chem. C 116(21), 11413–11425 (2012)

    Article  CAS  Google Scholar 

  3. A. Sacco, A. Lamberti, R. Gazia, S. Bianco, D. Manfredi, N. Shahzad, F. Cappelluti, S. Ma, E. Tresso, High efficiency dye-sensitized solar cells exploiting sponge-like ZnO nanostructures. Phys. Chem. Chem. Phys. 14(47), 16203–16208 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. D. Wei, Dye Sensitized Solar Cells. Int. J. Mol. Sci. 11(3), 1103–1113 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D.W. Kim, Y.B. Jeong, S.H. Kim, D.Y. Lee, J.S. Song, Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte. J. Power. Sources 149, 112–116 (2005)

    Article  CAS  Google Scholar 

  6. R. Komiya, L. Han, R. Yamanaka, A. Islam, T. Mitate, Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte. J. Photochem. Photobiol. A: Chem. 164(1–3), 123–127 (2004)

    Article  CAS  Google Scholar 

  7. S.J. Lim, Y.S. Kang, D.W. Kim, Dye-sensitized solar cells with quasi-solid-state cross-linked polymer electrolytes containing aluminum oxide. Electrochim. Acta 56(5), 2031–2035 (2011)

    Article  CAS  Google Scholar 

  8. M.S. Asmal Rani, N.A. Abdullah, M.H. Sainorudin, M. Mohammad, S. Ibrahim, The development of poly (ethylene oxide) reinforced with a nanocellulose-based nanocomposite polymer electrolyte in dye-sensitized solar cells. Mater. Adv. 2, 5465–5470 (2021)

    Article  Google Scholar 

  9. R. Boonsin, J. Sudchanham, N. Panusophon, P. Sae-Heng, C. Sae-Kung, P. Pakawatpanurut, Dye-sensitized solar cell with poly(acrylic acid-co-acrylonitrile)-based gel polymer electrolyte. Mater. Chem. Phys. 132(2–3), 993–998 (2012)

    Article  CAS  Google Scholar 

  10. M. Li, S. Feng, S. Fang, X. Xiao, X. Li, X. Zhou, Y. Lin, The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi–solid dye-sensitized solar cells. Electrochim. Acta 52(14), 4858–4863 (2007)

    Article  CAS  Google Scholar 

  11. D. Saikia, C.C. Han, Y.W. Chen-Yang, Influence of polymer concentration and dyes on photovoltaic performance of dye-sensitized solar cell with P(VdF-HFP)-based gel polymer electrolyte. J. Power. Sources 185, 570–576 (2008)

    Article  CAS  Google Scholar 

  12. D.T. Nguyen, T. Iwai, K. Taguchi, Dye-sensitized solar cells based on MK2 dye, PMMA-based quasi-solid electrolyte, and flexible CNT counter electrode. Energy Rep. 6(9), 872–876 (2020)

    Article  Google Scholar 

  13. J. Wu, Z. Lan, D. Wang, S. Hao, J. Lin, Y. Wei, S. Yin, T. Sato, Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly(acrylamide)–poly(ethylene glycol) composite. J. Photochem. Photobiol. A Chem. 181, 333–337 (2006)

    Article  CAS  Google Scholar 

  14. Z. Sun, R.K. Zhang, H.H. Xie, M. Liang, R.H. Du, S. Xue, Influence of 4-N, N-dimethylaminopyridine on the photovoltaic performance of dye-sensitized solar cells with poly(ethyleneoxide)/oligo(ethylene glycol) blend electrolytes. Electrochim. Acta 56(22), 7555–7562 (2011)

    Article  CAS  Google Scholar 

  15. J.Y. Lee, B. Bhattacharya, D.W. Kim, J.K. Park, Poly(ethylene oxide)/poly(dimethyl siloxane) blend solid polymer electrolyte and its dye-sensitized solar cell applications. J. Phys. Chem. C 112(32), 12576–12582 (2008)

    Article  CAS  Google Scholar 

  16. S. Ganesan, B. Muthuraaman, V. Mathew, M.K. Vadivel, P. Maruthamuthu, M. Ashokkumar, S.A. Suthanthiraraj, Influence of 2,6 (N-pyrazolyl)isonicotinic acid on the photovoltaic properties of a dye-sensitized solar cell fabricated using poly(vinylidene fluoride) blended with poly(ethylene oxide) polymer electrolyte. Electrochim. Acta 56(24), 8811–8817 (2011)

    Article  CAS  Google Scholar 

  17. A. Subramania, N.T.K. Sundaram, G.V. Kumar, Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. J. Power. Sources 153(1), 177–182 (2006)

    Article  CAS  Google Scholar 

  18. I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, E. Cazzanelli, Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes. Solid State Ionics 177(5–6), 581–588 (2006)

    Article  CAS  Google Scholar 

  19. S. Ganesan, B. Muthuraaman, V. Mathew, J. Madhavan, P. Maruthamuthu, S.A. Suthanthiraraj, Performance of a new polymer electrolyte incorporated with diphenylamine in nanocrystalline dye-sensitized solar cell. Sol. Energy. Mater. Sol. Cells. 92(12), 1718–1722 (2008)

    Article  CAS  Google Scholar 

  20. B. Muthuraaman, S. Murugesan, V. Mathew, S. Ganesan, B.J. Paul, J. Madhavan, P. Maruthamuthu, S.A. Suthanthiraraj, An investigation on the performance of a silver ionic solid electrolyte system for a new detergent-based nanocrystalline dye-sensitized solar cell. Sol. Energy Mater. Sol. Cells. 92(12), 1712–1717 (2008)

    Article  CAS  Google Scholar 

  21. K. Amar Nath, K. Prasad, K.P. Chandra, A.R. Kulkarni, Impedance and ac conductivity studies of Ba (Pr1/2Nb1/2) O3 ceramic. Bull. Mater. Sci. 36(4), 591–599 (2013)

    Article  CAS  Google Scholar 

  22. B. Muthuraaman, T. Shanmugam, P. Maruthamuthu, A.S. Nasar, Dye-sensitized solar cell based on a blend of hyperbranched poly(arylether-urethane) electrolyte with tio2 nanoparticles. J. Macromol. Sci. Part A: Pure & Applied Chem. 47(9), 965–970 (2010)

    Article  CAS  Google Scholar 

  23. M.M. Noor, M.A. Careem, S.R. Majid, A.K. Arof, Characterisation of plasticised PVDF-HFP polymer electrolytes. Mater. Res. Innov. 15(2), s157–s160 (2011)

    Article  Google Scholar 

  24. A. Tomar, S. Mahendia, S. Kumar, Structural characterization of PMMA blended with chemically synthesized PAni. Adv. Appl. Sci. Res. 2(3), 327–333 (2011)

    Google Scholar 

  25. M. Ulaganathan, M.C. Mathew, S. Rajendran, Highly porous lithium-ion conducting solvent-free poly (vinylidene fluoride-co-hexafluoropropylene)/poly(ethyl methacrylate) based polymer blend electrolytes for Li battery applications. Electrochim. Acta. 93, 230–235 (2013)

    Article  CAS  Google Scholar 

  26. S. Rajendran, V.S. Bama, M.R. Prabhu, Effect of lithium salt concentration in PVAc/PMMA-based gel polymer electrolytes. Ionics. 16(1), 27–32 (2010)

    Article  CAS  Google Scholar 

  27. Z. Osman, N.M. Anso, K.W. Chew, N. Kamarulzaman, Infrared and conductivity studies on blends of PMMA/PEO based polymer electrolytes. Ionics 11, 431–435 (2005)

    Article  CAS  Google Scholar 

  28. M.M. Colemann, P.C. Painter, Hydrogen bonded polymer blends. Prog. Polym. Sci. 20(1), 1–59 (1995)

    Article  Google Scholar 

  29. S.A. Suthanthiraraj, B.J. Paul, Investigation on structural characteristics of PVDF–AgCF3 SO3–Al2O3 nanocomposite solid polymer electrolyte system. Ionics 13(5), 365–368 (2007)

    Article  CAS  Google Scholar 

  30. B. Muthuraaman, G. Will, H. Wang, P. Moonie, J. Bell, Increased charge transfer of Poly (ethylene oxide) based electrolyte by addition of small molecule and its application in dye-sensitized solar cells. Electrochim. Acta 87, 526–531 (2013)

    Article  CAS  Google Scholar 

  31. M.R. Kim, S.H. Park, J.U. Kim, J.N. Lee, in Dye-sensitized Solar Cells Based on Polymer Electrolytes. ed. by L.A. Kosyachenko (Intech Publications, Europe, 2011), p.223

    Google Scholar 

  32. H.F. Lee, J.J. Kai, P.C. Liu, W.C. Chang, F.Y. Ouyang, H.T. Chan, A comparative study of charge transport in quasi-solid state dye-sensitized solar cells using polymer or nanocomposite gel electrolytes. J. Electroanal. Chem. 687(1), 45–50 (2012)

    Article  CAS  Google Scholar 

  33. N.M. Saidi, N.K. Farhana, S. Ramesh, K. Ramesh, Influence of different concentrations of 4-tert-butyl-pyridine in a gel polymer electrolyte towards improved performance of Dye-Sensitized Solar Cells (DSSC). Sol. Energy 216(1), 111–119 (2021)

    Article  CAS  Google Scholar 

  34. S. Sharma, M. Khannam, S.K. Dolui, A quasi solid state dye sensitized solar cell based on gelatin/multiwalled carbon nanotube gel electrolyte and ZnO nanorod photoanode. J. Mater. Sci. Mater. Electron. 27, 7864–7875 (2016)

    Article  CAS  Google Scholar 

  35. S. Ganesan, V. Mathew, B.J. Paul, P. Maruthamuthu, S.A. Suthanthiraraj, Influence of organic nitrogenous compounds phenothiazine and diphenyl amine in poly(vinylidene fluoride) blended with poly(ethylene oxide) polymer electrolyte in dye-sensitized solar cells. Electrochim. Acta 102, 219–224 (2013)

    Article  CAS  Google Scholar 

  36. R.A. Senthil, J. Theerthagiri, J. Madhavan, S. Ganesan, A.K. Arof, Influence of organic additive to PVDF-HFP mixed iodide electrolytes on the photovoltaic performance of dye-sensitized solar cells. J. Phys. Chem. Solids 101, 18–24 (2017)

    Article  CAS  Google Scholar 

  37. P. Karthika, S. Ganesan, Poly(ethylene glycol)–poly(propylene glycol)–poly(ethylene glycol) and polyvinylidene fluoride blend doped with oxydianiline-based thiourea derivatives as a novel and modest gel electrolyte system for dye-sensitized solar cell applications. RSC Adv. 10, 14768–14777 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

A.S.: conceptualization, data curation, formal analysis, investigation, methodology, software. S.M.: methodology, software, validation, visualization, writing-original draft. K.T.T.A: formal analysis, supervision, validation, writing-original draft, writing-review and editing.

Corresponding author

Correspondence to Kassian T. T. Amesho.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Blended solid polymer electrolyte enhances DSSC energy conversion efficiency.

• Phenothiazine (PZ) additive improves charge transfer in DSSCs.

• PVDF-HFP/PMMA electrolyte with PZ suppresses iodine sublimation.

• Structural modification enhances performance of nanocrystalline DSSCs.

• Potential of PZ-doped polymer electrolyte for practical solar cell applications.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, A., Murugapoopathi, S. & Amesho, K.T.T. Enhancing the Performance of Nanocrystalline TiO2 Dye-Sensitized Solar Cells with Phenothiazine-Doped Blended Solid Polymer Electrolyte. Electrocatalysis (2024). https://doi.org/10.1007/s12678-024-00867-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12678-024-00867-w

Keywords

Navigation