Skip to main content
Log in

Cost-Effective Electrodeposited Mixed Transition Metal Electrocatalysts for Efficient Hydrogen Evolution Reaction

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Hydrogen is a clean fuel with high energy density, considered one of the alternative energy sources of the future. Hydrogen evolution reaction (HER) could produce pure hydrogen on a large scale while striving for effective electrocatalysts. Here, binary and ternary mixed transition metals (Mn, Co, and Ni) were synthesized by an electrodeposition method and employed as efficient HER electrocatalysts. It was found that the combination of transition metals could positively tune the corresponding morphology and activity rather than using single metals. Namely, NiMn electrocatalysts with an onset potential of 83 mV and a Tafel slope of 103 \(\frac{mV}{dec}\) showed superior activity toward HER in alkaline media compared to the other developed electrocatalysts. This high activity was related to improved intrinsic activity, higher energy efficiency, and enhanced conductivity thanks to the synergy between manganese and nickel. NiMn electrocatalyst also displayed a durable and stable performance, rendering it a promising electrocatalyst for efficient electrocatalysis of HER.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All datasets used can be accessed.

References

  1. A.P. Murthy, J. Theerthagiri, J. Madhavan, K. Murugan, J. Solid State Electrochem. 22, 365 (2018)

    Article  CAS  Google Scholar 

  2. M. Wang, Y. Tuo, X. Li, Q. Hua, F. Du, L. Jiang, ACS Sustain. Chem. Eng. 7, 12419 (2019)

    CAS  Google Scholar 

  3. A. Shahroudi, F. Keivanimehr, S. Habibzadeh, Int. J. Hydrogen Energy Int J Hydrog Energy. 48, 39885 (2023)

    Article  CAS  Google Scholar 

  4. L. Wang, H. Wu, S. Xi, S.T. Chua, F. Wang, S.J. Pennycook, Z.G. Yu, Y. Du, J. Xue, ACS Appl. Mater. Interfaces. 11, 17359 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Angew Chem. Int. Ed. 55, 6290 (2016)

    Article  CAS  Google Scholar 

  6. Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, Angew Chem. Int. Ed. 57, 7568 (2018)

    Article  CAS  Google Scholar 

  7. Q. Li, Z. Xing, D. Wang, X. Sun, X. Yang, ACS Catal. 6, 2797 (2016)

    Article  CAS  Google Scholar 

  8. A. Shahroudi, M. Esfandiari, S. Habibzadeh, RSC Adv. 12, 29440 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. A.Q. Mugheri, M.S. Samtio, A.A. Sangah, J.H. Awan, S.A. Memon, Int. J. Hydrog. Energy. 46, 35261 (2021)

    Article  CAS  Google Scholar 

  10. G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu, C. Liu, J. Zhang, Nanoscale. 10, 17347 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. A.Q. Mugheri, A.A. Otho, M.A. Abro, A. Ali, S. Khan, Surf. Interfaces. 24, 101104 (2021)

    Article  CAS  Google Scholar 

  12. S. Dou, X. Wang, S. Wang, Small Methods. 3, 1800211 (2019)

    Article  Google Scholar 

  13. L. Wen, Y. Sun, T. Zhang, Y. Bai, X. Li, X. Lyu, W. Cai, Y. Li, Nanotechnology. 29, 335403 (2018)

    Article  PubMed  Google Scholar 

  14. X. Lu, C. Zhao, Nat. Commun. 6, 1 (2015)

    ADS  CAS  Google Scholar 

  15. A.Q. Mugheri, S. Ali, G.S. Narejo, A.A. Otho, R. Lal, M.A. Abro, S.H. Memon, F. Abbasi, Int. J. Hydrog. Energy. 45, 21502 (2020)

    Article  CAS  Google Scholar 

  16. A.Q. Mugheri, A.A. Otho, A.A. Mugheri, Int. J. Hydrog. Energy. 46, 22707 (2021)

    Article  CAS  Google Scholar 

  17. X. Wang, B. Zheng, B. Yu, B. Wang, W. Hou, W. Zhang, Y. Chen, J. Mater. Chem. A 6, 7842 (2018)

    Article  CAS  Google Scholar 

  18. H. Jin, X. Liu, S. Chen, A. Vasileff, L. Li, Y. Jiao, L. Song, Y. Zheng, S.Z. Qiao, ACS Energy Letters. 4, 805 (2019)

    Article  CAS  Google Scholar 

  19. F. Zhou, Y. Zhou, G.G. Liu, C.T. Wang, J. Wang, Rare Met. 40, 3375 (2021)

    Article  CAS  Google Scholar 

  20. L.L. Thi, P.N. Tuyen, T.Y. Vu, Nanotechnology. 31, 465401 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. J. Du, G. Xiong, H. Wu, L. Bai, W. Yao, Int. J. Hydrog. Energy. 48, 39900 (2023)

    Article  CAS  Google Scholar 

  22. Z. Xu, X. Teng, X. Dou, Y. Wu, J. Wei, Q. Chen, J. Zhang, J. Zeng, L. Yu, Energy Technol. 10, 2200523 (2022)

    Article  CAS  Google Scholar 

  23. X. Wen, J. Guan, Appl. Mater. Today. 16, 146 (2019)

    Article  Google Scholar 

  24. X. Wang, J. He, B. Yu, B. Sun, D. Yang, X. Zhang, Q. Zhang, W. Zhang, L. Gu, Y. Chen, Appl. Catal. B 258, 117996 (2019)

    Article  CAS  Google Scholar 

  25. Y. Wang, W. Wu, Y. Rao, Z. Li, N. Tsubaki, M. Wu, J. Mater. Chem. A 13, 6170 (2017)

    Article  Google Scholar 

  26. Y. Li, L. Zhou, S. Guo, EnergyChem. 3, 100053 (2021)

    Article  CAS  Google Scholar 

  27. Y. Xu, X. Zhang, Y. Liu, R. Wang, Y. Yang, J. Chen, Environ. Sci. Pollut. Res. 30, 11302 (2023)

    Article  CAS  Google Scholar 

  28. I.A. Raj, I.K. Vasu, J. Appl. Electrochem. 20, 32 (1990)

    Article  CAS  Google Scholar 

  29. T. Ling, T. Zhang, B. Ge, L. Han, L. Zheng, F. Lin, Z. Xu, W.B. Hu, X.W. Du, K. Davey, SZ. Qiao Adv. Mat. 31, 1807771 (2019)

    Article  Google Scholar 

  30. L. Han, L. Guo, C. Dong, C. Zhang, H. Gao, J. Niu, Z. Peng, Z. Zhang, Nano Res. 12, 2281 (2019)

    Article  CAS  Google Scholar 

  31. Z. Sukackienė, A. Balčiūnaitė, V. Kepenienė, J. Vaičiūnienė, G. Stalnionis, V. Pakštas, L. Tamašiūnaitė, E. Norkus, Batteries. 8, 129 (2022)

    Article  Google Scholar 

  32. X. Lyu, Y. Zhang, X. Wang, H. Chen, S. Li, W. Zhang, Y. Hu, F. Li, D. Li, D. Yang, Mater. Today Sustain. 21, 100295 (2023)

    Article  Google Scholar 

  33. J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Chem. Rev. 120, 851 (2019)

    Article  PubMed  Google Scholar 

  34. G. Maduraiveeran, M. Sasidharan, W. Jin, Prog. Mater. Sci. 106, 100574 (2019)

    Article  CAS  Google Scholar 

  35. Y. Pan, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. A 3, 13087 (2015)

    Article  CAS  Google Scholar 

  36. X. Wang, Y.V. Kolen’ko, X.Q. Bao, K. Kovnir, L. Liu, Angew Chem. 127, 8306 (2015)

    Article  ADS  Google Scholar 

  37. J. Theerthagiri, S.J. Lee, A.P. Murthy, J. Madhavan, M.Y. Choi, Curr. Opin. Solid State Mater. Sci. 24, 100805 (2020)

    Article  ADS  CAS  Google Scholar 

  38. M. Zhiani, F. Jalili, S. Kamali, Int. J. Hydrog. 42, 26563 (2017)

    Article  CAS  Google Scholar 

  39. Y. Liu, X. Xu, M. Sadd, O.O. Kapitanova, V.A. Krivchenko, J. Ban, J. Wang, X. Jiao, Z. Song, J. Song, Xiong, l. Adv. Sci. 8, 2003301 (2021)

    Article  CAS  Google Scholar 

  40. R. Guidelli, R.G. Compton, J.M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, S. Trasatti, Pure Appl. Chem. 86, 245 (2014)

    Article  CAS  Google Scholar 

  41. S. Omanovic, S.G. Roscoe, J. Colloid Interface Sci. 227, 452 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. V.M. Nikolic, S.L. Maslovara, G.S. Tasic, T.P. Brdaric, P.Z. Lausevic, B.B. Radak, M.P. Kaninski, Appl. Catal. B 179, 88 (2015)

    Article  CAS  Google Scholar 

  43. H. Fan, J. Huang, G. Chen, W. Chen, R. Zhang, S. Chu, X. Wang, C. Li, K.K. Ostrikov, ACS Sustain. Chem. Eng. 7, 1622 (2018)

    Article  Google Scholar 

  44. S. Lu, Y. Wang, H. Xiang, H. Lei, B.B. Xu, L. Xing, E.H. Yu, T.X. Liu, J. EnergyStorage. 52, 104764 (2022)

    Google Scholar 

  45. J.A. Nelder, R. Mead. 7, 308 (1965)

    Google Scholar 

  46. J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 29, 1605838 (2017)

    Article  Google Scholar 

  47. N. Hosseinzadeh, S. Habibzadeh, R. Halladj, J. Alloys Compd. 960, 171064 (2023)

    Article  CAS  Google Scholar 

  48. X. Zhao, B. He, J. Zhang, C. Du, Q. Ye, S. Liu, Vacuum. 198, 110888 (2022)

    Article  ADS  CAS  Google Scholar 

  49. P.C. Nagajyothi, K. Pavani, R. Ramaraghavulu, J. Shim, Int. J. Hydrog Energy. 54, 691 (2023)

    Article  Google Scholar 

  50. B. Muthukutty, T.C. Doan, H. Yoo, Environ. Res. 241, 117655 (2023)

    Article  PubMed  Google Scholar 

  51. S.C. Karumuthil, A.K. Singh, B.L. Prasad, Int. J. Hydrog Energy. 49, 658 (2023)

    Google Scholar 

  52. G.B. Darband, M. Aliofkhazraei, A.S. Rouhaghdam, M.A. Kiani, Appl. Surf. Sci. 465, 846 (2019)

    Article  ADS  CAS  Google Scholar 

  53. G.B. Darband, M. Aliofkhazraei, A.S. Rouhaghdam, J. Colloid Interface Sci. 547, 407 (2019)

    Article  ADS  Google Scholar 

  54. A. Raja, N. Son, Y.I. Kim, M. Kang, J. Colloid Interface Sci. 647, 104 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. H. Zhang, F. Li, S. Ji, J. Yang, C. Zhang, F. Yang, L. Lei, International Journal of Hydrogen Energy 45, 24615 (2020)

Download references

Funding

Funding is not applicable.

Author information

Authors and Affiliations

Authors

Contributions

S.G. carried out the experiment, wrote the original dearf. A.S. wrote and edited the revision. S.H. conceptualized and supervised the research and edited the manuscript.

Corresponding author

Correspondence to Sajjad Habibzadeh.

Ethics declarations

Ethical Approval

Ethical Approval is not applicable.

Competing Interests

The authors declare they have no financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golrokhifar, S., Shahroudi, A. & Habibzadeh, S. Cost-Effective Electrodeposited Mixed Transition Metal Electrocatalysts for Efficient Hydrogen Evolution Reaction. Electrocatalysis (2024). https://doi.org/10.1007/s12678-024-00864-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12678-024-00864-z

Keywords

Navigation