Skip to main content

Advertisement

Log in

Electrodeposition of Ni-Co-S Electrocatalyst Using 2,5-dimercapto-1,3,4-thiadiazole as S Precursor for Hydrogen Evolution Reaction at Neutral pH

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Among various chalcogenide materials, transition metal sulfides are known to be effective catalysts for the electrochemical hydrogen evolution reaction (HER). In particular, Ni-Co-S is a promising material for the next generation of non-precious metal HER catalysts due to its excellent HER activity in neutral pH solutions. Ni-Co-S is also advantageous in large-scale applications, as it enables relatively simple catalytic synthesis through electrodeposition. In this study, we employed a new S precursor, 2,5-dimercapto-1,3,4-thiadiazole (DMTD), for the electrodeposition of Ni-Co-S, instead of the conventional S precursor, thiourea (TU). Ni-Co-S synthesized with DMTD (Ni-Co-SDMTD) showed enhanced HER activity at neutral pH compared to that synthesized with TU (Ni-Co-STU). It has been found that this improvement in activity is due to the large surface area and high S content of Ni-Co-SDMTD. The S content and HER activity of Ni-Co-SDMTD depend on the concentration of DMTD. At the optimal DMTD concentration (12 mM), Ni-Co-SDMTD exhibited an overpotential of 303 mV at a current density of 10 mA cm− 2 and a Tafel slope of 99 mV dec− 1 in a phosphate buffer solution (pH 7.4).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in this study are available from the corresponding author upon reasonable request.

References

  1. X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. S. Dutta, A review on production, storage of hydrogen and its utilization as an energy resource. J. Ind. Eng. Chem. 20, 1148–1156 (2014)

    Article  CAS  Google Scholar 

  3. G. Zhao, K. Rui, S.X. Dou, W. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28, 1803291 (2018)

    Article  Google Scholar 

  4. A.M. Abdalla et al., Hydrogen production, storage, transportation and key challenges with applications: a review. Energy. Conv. Manag. 165, 602–627 (2018)

    Article  CAS  Google Scholar 

  5. X. Xu, P. Du, Z. Chen, M. Huang, An electrodeposited cobalt–selenide-based film as an efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 4, 10933–10939 (2016)

    Article  CAS  Google Scholar 

  6. G.B. Darband, M. Aliofkhazraei, S. Hyun, A.S. Rouhaghdam, S. Shanmugam, Electrodeposited NiCoP hierarchical nanostructure as a cost-effective and durable electrocatalyst with superior activity for bifunctional water splitting. J. Power Sources. 429, 156–167 (2019)

    Article  CAS  Google Scholar 

  7. Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529–1541 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. C.C. McCrory et al., Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. A.P. Murthy, J. Madhavan, K. Murugan, Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. J. Power Sources. 398, 9–26 (2018)

    Article  CAS  Google Scholar 

  10. P. Wang, K. Jiang, G. Wang, J. Yao, X. Huang, Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem. 128, 13051–13055 (2016)

    Article  Google Scholar 

  11. D.V. Esposito, S.T. Hunt, Y.C. Kimmel, J.G. Chen, A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 134, 3025–3033 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. P.C. Vesborg, B. Seger, I. Chorkendorff, Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 6, 951–957 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. W.-F. Chen, J.T. Muckerman, E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49, 8896–8909 (2013)

    Article  CAS  Google Scholar 

  14. S. Jing et al., N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl. Catal. B 224, 533–540 (2018)

    Article  CAS  Google Scholar 

  15. W.F. Chen et al., Hydrogen-evolution catalysts based on non‐noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51, 6131–6135 (2012)

    Article  CAS  Google Scholar 

  16. B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 19186–19192 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. M.Q. Wang, C. Ye, H. Liu, M. Xu, S.J. Bao, Nanosized metal phosphides embedded in nitrogen-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values. Angew. Chem. 130, 1981–1985 (2018)

    Article  Google Scholar 

  18. H. Du, R.-M. Kong, X. Guo, F. Qu, J. Li, Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale. 10, 21617–21624 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. R. Miao et al., Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 139, 13604–13607 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. P. Kuang, T. Tong, K. Fan, J. Yu, In situ fabrication of Ni–Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 7, 6179–6187 (2017)

    Article  CAS  Google Scholar 

  21. A.P. Murthy, D. Govindarajan, J. Theerthagiri, J. Madhavan, K. Parasuraman, Metal-doped molybdenum nitride films for enhanced hydrogen evolution in near-neutral strongly buffered aerobic media. Electrochim. Acta. 283, 1525–1533 (2018)

    Article  CAS  Google Scholar 

  22. Z. Zhou et al., Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy Environ. Sci. 13, 3185–3206 (2020)

    Article  CAS  Google Scholar 

  23. X. Guo et al., Sulfur vacancy-tailored NiCo 2 S 4 nanosheet arrays for the hydrogen evolution reaction at all pH values. Catal. Sci. Technol. 10, 1056–1065 (2020)

    Article  CAS  Google Scholar 

  24. A. Irshad, N. Munichandraiah, Electrodeposited nickel–cobalt–sulfide catalyst for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces. 9, 19746–19755 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. B. Liu et al., Nickel–cobalt diselenide 3D mesoporous nanosheet networks supported on ni foam: an all-pH highly efficient integrated electrocatalyst for hydrogen evolution. Adv. Mater. 29, 1606521 (2017)

    Article  Google Scholar 

  26. J. Xu et al., Highly dispersive NiCo2S4 nanoparticles anchored on nitrogen-doped carbon nanofibers for efficient hydrogen evolution reaction. J. Colloid Interface Sci. 555, 294–303 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. Z. Peng, D. Jia, A.M. Al-Enizi, A.A. Elzatahry, G. Zheng, From water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 5, 1402031 (2015)

    Article  Google Scholar 

  28. Q. Che et al., One-step electrodeposition of a hierarchically structured S-doped NiCo film as a highly-efficient electrocatalyst for the hydrogen evolution reaction. Nanoscale. 10, 15238–15248 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. X. Ren et al., An amorphous FeMoS 4 nanorod array toward efficient hydrogen evolution electrocatalysis under neutral conditions. Chem. Commun. 53, 9000–9003 (2017)

    Article  CAS  Google Scholar 

  30. C.-H. Lee et al., Insight into the superior activity of bridging sulfur-rich amorphous molybdenum sulfide for electrochemical hydrogen evolution reaction. Appl. Catal. B 258, 117995 (2019)

    Article  CAS  Google Scholar 

  31. K. Du et al., Electrodeposited Mo3S13 films from (NH4) 2Mo3S13· 2H2O for electrocatalysis of hydrogen evolution reaction. ACS Appl. Mater. Interfaces. 9, 18675–18681 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. L.R.L. Ting et al., Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal. 6, 861–867 (2016)

    Article  CAS  Google Scholar 

  33. M. Fan et al., An efficient nanostructured copper (I) sulfide-based hydrogen evolution electrocatalyst at neutral pH. Electrochim. Acta. 215, 366–373 (2016)

    Article  CAS  Google Scholar 

  34. J. Wang, H.-. Zhong, Z.-. Wang, F.-. Meng, Zhang, X.-b. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS nano. 10, 2342–2348 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS nano. 8, 9531–9541 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. R.A. Marquez-Montes et al., Mass transport-enhanced electrodeposition of Ni–S–P–O films on nickel foam for electrochemical water splitting. J. Mater. Chem. A 9, 7736–7749 (2021)

    Article  CAS  Google Scholar 

  37. J. Shi, X. Li, G. He, L. Zhang, M. Li, Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors. J. Mater. Chem. A 3, 20619–20626 (2015)

    Article  CAS  Google Scholar 

  38. D. Merki, S. Fierro, H. Vrubel, X. Hu, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011)

    Article  CAS  Google Scholar 

  39. D.W. Redman, M.J. Rose, K.J. Stevenson, Electrodeposition of amorphous molybdenum chalcogenides from ionic liquids and their activity for the hydrogen evolution reaction. Langmuir. 33, 9354–9360 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. X. Li et al., Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni–NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv. Mater. 32, 2003414 (2020)

    Article  CAS  Google Scholar 

  41. S. Wang et al., Facile electrodeposition of three-dimensional flower-like structure of nickel matrix composite electrodes for hydrogen evolution reaction. Appl. Surf. Sci. 498, 143768 (2019)

    Article  CAS  Google Scholar 

  42. J. Hu et al., A crystalline–amorphous Ni–Ni (OH) 2 core–shell catalyst for the alkaline hydrogen evolution reaction. J. Mater. Chem. A 8, 23323–23329 (2020)

    Article  CAS  Google Scholar 

  43. X. Zhao, X. Chen, Y. Wang, P. Song, Y. Zhang, High-efficiency Ni–P catalysts in amorphous and crystalline states for the hydrogen evolution reaction. Sustainable Energy & Fuels. 4, 4733–4742 (2020)

    Article  CAS  Google Scholar 

  44. H. Huang et al., Structural design of amorphous CoMoPx with abundant active sites and synergistic catalysis effect for effective water splitting. Adv. Funct. Mater. 30, 2003889 (2020)

    Article  CAS  Google Scholar 

  45. L. Gao et al., Crystalline cobalt/amorphous LaCoO x hybrid nanoparticles embedded in porous nitrogen-doped carbon as efficient electrocatalysts for hydrazine-assisted hydrogen production. ACS Appl. Mater. Interfaces. 12, 24701–24709 (2020)

    Article  CAS  PubMed  Google Scholar 

  46. S. Poorahong, R. Izquierdo, M. Siaj, An efficient porous molybdenum diselenide catalyst for electrochemical hydrogen generation. J. Mater. Chem. A 5, 20993–21001 (2017)

    Article  CAS  Google Scholar 

  47. W. Dai et al., A novel Ni-S-Mn electrode with hierarchical morphology fabricated by gradient electrodeposition for hydrogen evolution reaction. Appl. Surf. Sci. 514, 145944 (2020)

    Article  CAS  Google Scholar 

  48. S. Hou et al., Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. J. Mater. Chem. A 5, 19054–19061 (2017)

    Article  CAS  Google Scholar 

  49. C. Miao et al., Facile electrodeposition of amorphous nickel/nickel sulfide composite films for high-efficiency hydrogen evolution reaction. ACS Appl. Energy Mater. 4, 927–933 (2021)

    Article  CAS  Google Scholar 

  50. T. Sun et al., Ordered mesoporous NiCo alloys for highly efficient electrocatalytic hydrogen evolution reaction. Int. J. Hydrog. Energy. 42, 6637–6645 (2017)

    Article  CAS  Google Scholar 

  51. Y. Liu et al., Surface phosphorsulfurization of NiCo2O4 nanoneedles supported on carbon cloth with enhanced electrocatalytic activity for hydrogen evolution. Electrochim. Acta. 290, 339–346 (2018)

    Article  CAS  Google Scholar 

  52. Q. Sun et al., Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis. J. Colloid Interface Sci. 589, 127–134 (2021)

    Article  CAS  PubMed  Google Scholar 

  53. D. Zha, Y. Fu, L. Zhang, J. Zhu, X. Wang, Design and fabrication of highly open nickel cobalt sulfide nanosheets on ni foam for asymmetric supercapacitors with high energy density and long cycle-life. J. Power Sources. 378, 31–39 (2018)

    Article  CAS  Google Scholar 

  54. P. Juan et al., Sulfur-rich molybdenum sulfide grown on porous N-Doped graphene for efficient hydrogen evolution. Ind. Eng. Chem. Res. 59, 12862–12869 (2020)

    Article  CAS  Google Scholar 

  55. B. Seo et al., Preferential horizontal growth of tungsten sulfide on carbon and insight into active sulfur sites for the hydrogen evolution reaction. Nanoscale. 10, 3838–3848 (2018)

    Article  CAS  PubMed  Google Scholar 

  56. B. Seo et al., Monomeric MoS42–-derived polymeric chains with active molecular units for efficient hydrogen evolution reaction. ACS Catal. 10, 652–662 (2019)

    Article  Google Scholar 

  57. M. Dave et al., Understanding homogeneous hydrogen evolution reactivity and deactivation pathways of molecular molybdenum sulfide catalysts. Sustainable Energy & Fuels. 2, 1020–1026 (2018)

    Article  CAS  Google Scholar 

  58. W. Xu et al., A highly efficient electrocatalyst based on amorphous Pd–Cu–S material for hydrogen evolution reaction. J. Mater. Chem. A 5, 18793–18800 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Korea Institute of Science and Technology (No. 2E31871). This research was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022R1F1A1074205).

Author information

Authors and Affiliations

Authors

Contributions

Yeosol Yoon: conceptualization, methodology, investigation, data curation, and writing original draft; Sehyun Yoo: data curation, validation, and reviewing; Taeho Lim: conceptualization, resources, reviewing, editing, project administration, funding acquisition. All authors have approved the submission of the manuscript.

Corresponding author

Correspondence to Taeho Lim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, Y., Yoo, S. & Lim, T. Electrodeposition of Ni-Co-S Electrocatalyst Using 2,5-dimercapto-1,3,4-thiadiazole as S Precursor for Hydrogen Evolution Reaction at Neutral pH. Electrocatalysis 14, 800–809 (2023). https://doi.org/10.1007/s12678-023-00837-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00837-8

Keywords

Navigation