Skip to main content
Log in

Effect of MnO Content on the Oxygen Reduction Activity of MnO/C Nanostructures

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Manganese oxide based materials are considered as alternate non-noble metal electrocatalysts for oxygen reduction reaction (ORR). These materials possess rich redox chemistry and can decompose hydrogen peroxide disproportionately to drive the oxygen reduction towards efficient 4-electron pathway. In this work, a set of MnO nanostructures supported on activated charcoal (MnO/C) with varying MnO loadings are prepared by ball milling followed by in-situ pyrolysis. The MnO/C composites are tested for ORR activity by employing cyclic voltammetry and linear sweep voltammetry using rotating-ring disk electrode (RRDE) in 0.1 M KOH. The results indicate that the ORR activity as well as catalytic pathways are sensitive to MnO loading. The ORR activities of the composites follow volcano type relationship with the quantity of MnO loadings. The role of MnO loading on surface morphology, hydrophilicity, electrochemical double layer capacitance (Cdl) and electrochemical active surface area (ECSA) of the composites has been investigated and correlated with ORR activity. Among the MnO electroctalysts studied, 18 wt% MnO loaded sample showed the highest activity, close to that of standard Pt/C, with onset potential of 1.02 V vs. RHE and 3.48 mA cm-2 limiting disk current in RRDE at 0.2 V. This electrocatalyst also preferred 4-electron reduction pathway in ORR and produced least amount of hydrogen peroxide. No hydrophilicity effect is found on the ORR activity of MnO/C electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets used in this article.

References

  1. M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462

    Article  CAS  PubMed  Google Scholar 

  2. S. Hussain, H. Erikson, N. Kongi, A. Sarapuu, J. Solla-Gullón, G. Maia, A.M. Kannan, N. Alonso-Vante, K. Tammeveski, Oxygen reduction reaction on nanostructured Pt-based electrocatalysts: a review. Int. J. Hydrog Energy. 45, 31775–31797 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.215

    Article  CAS  Google Scholar 

  3. A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488

    Article  CAS  PubMed  Google Scholar 

  4. S. Mukerjee, S. Srinivasan, Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J. Electroanal. Chem. 357, 201–224 (1993). https://doi.org/10.1016/0022-0728(93)80380-Z

    Article  CAS  Google Scholar 

  5. J. Wu, H. Yang, Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 46, 1848–1857 (2013). https://doi.org/10.1021/ar300359w

    Article  CAS  PubMed  Google Scholar 

  6. S.M. Unni, V.K. Pillai, S. Kurungot, 3-Dimensionally self-assembled single crystalline platinum nanostructures on few-layer graphene as an efficient oxygen reduction electrocatalyst. RSC Adv. 3, 6913–6921 (2013). https://doi.org/10.1039/c3ra23112g

    Article  CAS  Google Scholar 

  7. K. Moses, V. Kiran, S. Sampath, C.N.R. Rao, Few-layer borocarbonitride nanosheets: platinum-free catalyst for the oxygen reduction reaction. Chem. Asian J. 9, 838–843 (2014). https://doi.org/10.1002/asia.201301471

    Article  CAS  PubMed  Google Scholar 

  8. W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth-abundant nanomaterials for oxygen reduction. Angew Chem. Int. Ed. 55, 2650–2676 (2016). https://doi.org/10.1002/anie.201504830

    Article  CAS  Google Scholar 

  9. C.R. Raj, A. Samanta, S.H. Noh, S. Mondal, T. Okajima, T. Ohsaka, Emerging new generation electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 4, 11156–11178 (2016). https://doi.org/10.1039/c6ta03300h

    Article  CAS  Google Scholar 

  10. V. Kiran, K. Srinivasu, S. Sampath, Morphology dependent oxygen reduction activity of titanium carbide: bulk vs. nanowires. Phys. Chem. Chem. Phys. 15, 8744–8751 (2013). https://doi.org/10.1039/c3cp50731a

    Article  CAS  PubMed  Google Scholar 

  11. P. Justin, P.H.K. Charan, G. Ranga Rao, Activated zirconium carbide promoted Pt/C electrocatalyst for oxygen reduction. Appl. Catal. B Environ. 144, 767–774 (2014). https://doi.org/10.1016/j.apcatb.2013.08.024

    Article  CAS  Google Scholar 

  12. T. Palaniselvam, V. Kashyap, S.N. Bhange, J.B. Baek, S. Kurungot, Nanoporous graphene enriched with Fe/Co-N active sites as a promising oxygen reduction electrocatalyst for anion exchange membrane fuel cells. Adv. Funct. Mater. 26, 2150–2162 (2016). https://doi.org/10.1002/adfm.201504765

    Article  CAS  Google Scholar 

  13. J. Guo, Q. Li, H. Hou, J. Chen, C. Wang, S. Zhang, X. Wang, Cost-effective Co3O4 nanospheres on nitrogen-doped graphene used as highly efficient catalyst for oxygen reduction reaction. Int. J. Hydrog Energy. 44, 30348–30356 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.165

    Article  CAS  Google Scholar 

  14. D. Mahato, Y.P. Kharwar, K. Ramanujam, P. Haridoss, T. Thomas, N co-doped graphene quantum dots decorated TiO2 and supported with carbon for oxygen reduction reaction catalysis. Int. J. Hydrog Energy. 46, 21549–21565 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.013

    Article  CAS  Google Scholar 

  15. Y. Dessie, S. Tadesse, R. Eswaramoorthy, B. Abebe, Recent developments in manganese oxide based nanomaterials with oxygen reduction reaction functionalities for energy conversion and storage applications: a review. J. Sci. Adv. Mater. Devices. 4, 353–369 (2019). https://doi.org/10.1016/j.jsamd.2019.07.001

    Article  Google Scholar 

  16. E. Antolini, E.R. Gonzalez, Alkaline direct alcohol fuel cells. J. Power Sources. 195, 3431–3450 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.145

    Article  CAS  Google Scholar 

  17. A. Bonnefont, A.S. Ryabova, T. Schott, G. Kéranguéven, S.Y. Istomin, E.V. Antipov, E.R. Savinova, Challenges in the understanding oxygen reduction electrocatalysis on transition metal oxides. Curr. Opin. Electrochem. 14, 23–31 (2019). https://doi.org/10.1016/j.coelec.2018.09.010

    Article  CAS  Google Scholar 

  18. K. Selvakumar, S.M.S. Kumar, R. Thangamuthu, G. Kruthika, P. Murugan, Development of shape-engineered α-MnO2 materials as bi-functional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium. Int. J. Hydrog Energy. 39, 21024–21036 (2014). https://doi.org/10.1016/j.ijhydene.2014.10.088

    Article  CAS  Google Scholar 

  19. Y.G. Wang, L. Cheng, F. Li, H.M. Xiong, Y.Y. Xia, High electrocatalytic performance of Mn3O4/mesoporous carbon composite for oxygen reduction in alkaline solutions. Chem. Mater. 19, 2095–2101 (2007). https://doi.org/10.1021/cm062685t

    Article  CAS  Google Scholar 

  20. A.C. Garcia, A.D. Herrera, E.A. Ticianelli, M. Chatenet, C. Poinsignon, Evaluation of several carbon-supported nanostructured Ni-doped manganese oxide materials for the electrochemical reduction of oxygen. J. Electrochem. Soc. 158, B290–B296 (2011). https://doi.org/10.1149/1.3528439

    Article  CAS  Google Scholar 

  21. K.B. Liew, W.R.W. Daud, M. Ghasemi, K.S. Loh, M. Ismail, S.S. Lim, J.X. Leong, Manganese oxide/functionalised carbon nanotubes nanocomposite as catalyst for oxygen reduction reaction in microbial fuel cell. Int. J. Hydrog Energy. 40, 11625–11632 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.030

    Article  CAS  Google Scholar 

  22. S.P. Mantry, B.D. Mohapatra, N. Behera, P. Mishra, P. Parhi, K.S.K. Varadwaj, Potentiostatic regeneration of oxygen reduction activity in MnOx@graphene hybrid nanostructures. Electrochim. Acta. 325, 134947–134957 (2019). https://doi.org/10.1016/j.electacta.2019.134947

    Article  CAS  Google Scholar 

  23. I. Shypunov, N. Kongi, J. Kozlova, L. Matisen, P. Ritslaid, V. Sammelselg, K. Tammeveski, Enhanced oxygen reduction reaction activity with electrodeposited ag on manganese oxide-graphene supported electrocatalyst. Electrocatalysis. 6, 465–471 (2015). https://doi.org/10.1007/s12678-015-0266-x

    Article  CAS  Google Scholar 

  24. C. Goswami, K.K. Hazarika, P. Bharali, Transition metal oxide nanocatalysts for oxygen reduction reaction. Mater. Sci. Energy Technol. 1, 117–128 (2018). https://doi.org/10.1016/j.mset.2018.06.005

    Article  Google Scholar 

  25. Z. Li, Y. Yang, A. Relefors, X. Kong, G.M. Siso, B. Wickman, Y. Kiros, I.L. Soroka, Tuning morphology, composition and oxygen reduction reaction (ORR) catalytic performance of manganese oxide particles fabricated by γ-radiation induced synthesis. J. Colloid Interface Sci. 583, 71–79 (2021). https://doi.org/10.1016/j.jcis.2020.09.011

    Article  CAS  PubMed  Google Scholar 

  26. J.H. Lee, Y.J. Sa, T.K. Kim, H.R. Moon, S.H. Joo, A transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties. J. Mater. Chem. A 2, 10435–10443 (2014). https://doi.org/10.1039/C4TA01272K

    Article  CAS  Google Scholar 

  27. S. Bag, K. Roy, C.S. Gopinath, C.R. Raj, Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn3O4 hybrid functional material for the electrocatalytic reduction of oxygen. ACS Appl. Mater. Interfaces. 6, 2692–2699 (2014). https://doi.org/10.1021/am405213z

    Article  CAS  PubMed  Google Scholar 

  28. S.K. Bikkarolla, F. Yu, W. Zhou, P. Joseph, P. Cumpson, P. Papakonstantinou, A three-dimensional Mn3O4 network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media. J. Mater. Chem. A 2, 14493–14501 (2014). https://doi.org/10.1039/c4ta02279c

    Article  CAS  Google Scholar 

  29. I.J.R. Sarkar, S.G. Peera, R. Chetty, Manganese oxide nanoparticles supported nitrogen-doped graphene: a durable alkaline oxygen reduction electrocatalyst. J. Appl. Electrochem. 48, 849–865 (2018). https://doi.org/10.1007/s10800-018-1207-1

    Article  CAS  Google Scholar 

  30. J. Ding, S. Ji, H. Wang, D.J.L. Brett, B.G. Pollet, R. Wang, MnO/N-doped mesoporous carbon as advanced oxygen reduction reaction electrocatalyst for zinc-air batteries. Chem. Eur. J. 25, 2868–2876 (2019). https://doi.org/10.1002/chem.201806115

    Article  CAS  PubMed  Google Scholar 

  31. M.P. Karthikayini, G. Wang, P.A. Bhobe, A. Sheelam, V.K. Ramani, K.R. Priolkar, R.K. Raman, Effect of protonated amine molecules on the oxygen reduction reaction on metal-nitrogen-carbon-based catalysts. Electrocatalysis. 8, 74–85 (2017). https://doi.org/10.1007/s12678-016-0341-y

    Article  CAS  Google Scholar 

  32. B.D. Mohapatra, S.P. Mantry, N. Behera, B. Behera, S. Rath, K.S.K. Varadwaj, Stimulation of electrocatalytic oxygen reduction activity on nitrogen doped graphene through noncovalent molecular functionalisation. Chem. Commun. 52, 10385–10388 (2016). https://doi.org/10.1039/c6cc03319a

    Article  CAS  Google Scholar 

  33. J. Speder, L. Altmann, M. Bäumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, The particle proximity effect: from model to high surface area fuel cell catalysts. RSC Adv. 4, 14971–14978 (2014). https://doi.org/10.1039/c4ra00261j

    Article  CAS  Google Scholar 

  34. S. Taylor, E. Fabbri, P. Levecque, T.J. Schmidt, O. Conrad, The effect of platinum loading and surface morphology on oxygen reduction activity. Electrocatalysis. 7, 287–296 (2016). https://doi.org/10.1007/s12678-016-0304-3

    Article  CAS  Google Scholar 

  35. M. Inaba, A. Zana, J. Quinson, F. Bizzotto, C. Dosche, A. Dworzak, M. Oezaslan, S.B. Simonsen, L.T. Kuhn, M. Arenz, The oxygen reduction reaction on pt: why particle size and interparticle distance matter. ACS Catal. 11, 7144–7153 (2021). https://doi.org/10.1021/acscatal.1c00652

    Article  CAS  Google Scholar 

  36. S. Proch, K. Kodama, M. Inaba, K. Oishi, N. Takahashi, Y. Morimoto, The “particle proximity effect” in three dimensions: a case study on vulcan XC 72R. Electrocatalysis. 7, 249–261 (2016). https://doi.org/10.1007/s12678-016-0302-5

    Article  CAS  Google Scholar 

  37. M.L. Calegaro, F.H.B. Lima, E.A. Ticianelli, Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions. J. Power Sources. 158, 735–739 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.048

    Article  CAS  Google Scholar 

  38. W. Sun, A. Hsu, R. Chen, Carbon-supported tetragonal MnOOH catalysts for oxygen reduction reaction in alkaline media. J. Power Sources. 196, 627–635 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.082

    Article  CAS  Google Scholar 

  39. Y. Dong, Y. Xue, W. Gu, Z. Yang, G. Xu, MnO2 nanowires/CNTs composites as efficient non-precious metal catalyst for oxygen reduction reaction. J. Electroanal. Chem. 837, 55–59 (2019). https://doi.org/10.1016/j.jelechem.2019.02.012

    Article  CAS  Google Scholar 

  40. Y. Lin, S. Zhao, J. Qian, N. Xu, X.Q. Liu, L.B. Sun, W. Li, Z. Chen, Z. Wu, Petal cell-derived MnO nanoparticle-incorporated biocarbon composite and its enhanced lithium storage performance. J. Mater. Sci. 55, 2139–2154 (2020). https://doi.org/10.1007/s10853-019-04085-4

    Article  CAS  Google Scholar 

  41. M.K. Sahoo, G. Ranga Rao, Enhanced methanol electro-oxidation activity of Pt/rGO electrocatalyst promoted by NbC/Mo2C phases. ChemistrySelect. 5, 3805–3814 (2020). https://doi.org/10.1002/slct.202000170

    Article  CAS  Google Scholar 

  42. K. Liu, C. Shi, J. Yu, E. Zhu, Z. Li, C. Zhang, W. Li, X. Yang, Y. Zhang, M. Xu, Highly dispersed MnO nanoparticles supported on N-doped rGO as an efficient oxygen reduction electrocatalyst via high-temperature pyrolysis. Int. J. Hydrog Energy. 46, 28011–28020 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.058

    Article  CAS  Google Scholar 

  43. M.N. Dang, T.H. Nguyen, T.V. Nguyen, T.V. Thu, H. Le, M. Akabori, N. Ito, H.Y. Nguyen, T.L. Le, T.H. Nguyen, V.T. Nguyen, N.H. Phan, One-pot synthesis of manganese oxide/graphene composites via a plasma-enhanced electrochemical exfoliation process for supercapacitors. Nanotechnology. 31, 345401–345410 (2020). https://doi.org/10.1088/1361-6528/ab8fe5

    Article  CAS  PubMed  Google Scholar 

  44. L. Zhang, L.Y. Tu, Y. Liang, Q. Chen, Z.S. Li, C.H. Li, Z.H. Wang, W. Li, Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 8, 42280–42291 (2018). https://doi.org/10.1039/c8ra08990f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. H. Cheng, K. Xu, L. Xing, S. Liu, Y. Gong, L. Gu, L. Zhang, C. Wu, Manganous oxide nanoparticles encapsulated in few-layer carbon as an efficient electrocatalyst for oxygen reduction in alkaline media. J. Mater. Chem. A 4, 11775–11781 (2016). https://doi.org/10.1039/c6ta02846b

    Article  CAS  Google Scholar 

  46. I.M. Patil, M. Lokanathan, B. Kakade, Three dimensional nanocomposite of reduced graphene oxide and hexagonal boron nitride as an efficient metal-free catalyst for oxygen electroreduction. J. Mater. Chem. A 4, 4506–4515 (2016). https://doi.org/10.1039/c6ta00525j

    Article  CAS  Google Scholar 

  47. F.D. Speck, P.G. Santori, F. Jaouen, S. Cherevko, Mechanisms of Manganese Oxide Electrocatalysts degradation during Oxygen reduction and oxygen evolution reactions. J. Phys. Chem. C 123, 25267–25277 (2019). https://doi.org/10.1021/acs.jpcc.9b07751

    Article  CAS  Google Scholar 

  48. J. Behnken, M. Yu, X. Deng, H. Tüysüz, C. Harms, A. Dyck, G. Wittstock, Oxygen reduction reaction activity of mesostructured cobalt-based metal oxides studied with the cavity-microelectrode technique. ChemElectroChem. 6, 3460–3467 (2019). https://doi.org/10.1002/celc.201900722

    Article  CAS  Google Scholar 

  49. G. Rambabu, Z. Turtayeva, F. Xu, G. Maranzana, M. Emo, S. Hupont, M. Mamlouk, A. Desforges, B. Vigolo, Insights into the electrocatalytic behavior of nitrogen and sulfur co-doped carbon nanotubes toward oxygen reduction reaction in alkaline media. J. Mater. Sci. 57, 16739–16754 (2022). https://doi.org/10.1007/s10853-022-07653-3

    Article  CAS  Google Scholar 

  50. C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013). https://doi.org/10.1021/ja407115p

    Article  CAS  PubMed  Google Scholar 

  51. M.F. Fink, J. Eckhardt, P. Khadke, T. Gerdes, C. Roth, Bifunctional α-MnO2 and Co3O4 catalyst for oxygen electrocatalysis in alkaline solution. ChemElectroChem. 7, 4822–4836 (2020). https://doi.org/10.1002/celc.202001325

    Article  CAS  Google Scholar 

  52. A. Ganesan, M. Narayanasamy, K. Shunmugavel, Self-humidifying manganese oxide-supported pt electrocatalysts for highly-durable PEM fuel cells. Electrochem. Acta. 285, 47–59 (2018). https://doi.org/10.1016/j.electacta.2018.08.001

    Article  CAS  Google Scholar 

  53. Z. Wang, X. Jin, F. Chen, S. Bian, J. Li, J. Chen, Construction of Pt/Powder Charcoal Electrocatalyst utilizing MnO2 as an additive to improve the Stability for Oxygen reduction reaction. ACS Appl. Eng. Mater. 1, 1024–1033 (2023). https://doi.org/10.1021/acsaenm.3c00002

    Article  CAS  Google Scholar 

  54. G.P. Hao, N.R. Sahraie, Q. Zhang, S. Krause, M. Oschatz, A. Bachmatiuk, P. Strasser, S. Kaskel, Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction. Chem. Commun. 51, 17285–17288 (2015). https://doi.org/10.1039/c5cc06256j

    Article  CAS  Google Scholar 

  55. L. Liu, Z. Xu, L. Cao, Y. Jia, Z. Yao, Z. Xu, R. Li, Z. Zi, Superiorly-hydrophilic chrysalis-like carbon-shell supported metallic ni nanoparticles toward efficient oxygen reduction electrocatalysis. Colloids Surf. A: Physicochem Eng. Asp. 646, 128997 (2022). https://doi.org/10.1016/j.colsurfa.2022.128997

    Article  CAS  Google Scholar 

  56. Z. Xiao, C. Wu, W. Wang, L. Pan, J. Zou, L. Wang, X. Zhang, G. Li, Tailoring the hetero-structure of iron oxides in the framework of nitrogen doped carbon for the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 8, 25791–25804 (2020). https://doi.org/10.1039/d0ta09828k

    Article  CAS  Google Scholar 

  57. J.A. Prithi, R. Vedarajan, G. Ranga Rao, N. Rajalakshmi, Functionalization of carbons for pt electrocatalyst in PEMFC. Int. J. Hydrog Energy. 46, 17871–17885 (2021). https://doi.org/10.1016/j.ijhydene.2021.02.186

    Article  CAS  Google Scholar 

  58. A.S. Ryabova, A. Bonnefont, P.A. Simonov, T. Dintzer, C. Ulhaq-Bouillet, Y.G. Bogdanova, G.A. Tsirlina, E.R. Savinova, Further insights into the role of carbon in manganese oxide/carbon composites in the oxygen reduction reaction in alkaline media. Electrochim. Acta. 246, 643–653 (2017). https://doi.org/10.1016/j.electacta.2017.06.017

    Article  CAS  Google Scholar 

  59. S.K. Meher, G. Ranga Rao, Morphology-controlled promoting activity of Nanostructured MnO2 for methanol and ethanol electrooxidation on Pt/C. J. Phys. Chem. C 117, 4888–4900 (2013). https://doi.org/10.1021/jp3093995

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vineet Mishra thanks IIT Madras for awarding JRF and SRF Fellowships. Biswaranjan is a Research Associate at DSEHC-Solar Fuels Laboratory at IIT Madras. Tapan Kumar thanks CSIR for JRF and SRF Fellowships. The authors acknowledge ARCI, IIT Madras Research Park, for XPS analysis under MNRE Project No.350/2/2018NT.

Funding

Financial support received from Department of Science and Technology (Grant No. DST/TMD/SERI/HUB/1 C) and Science and Engineering Research Board (Grant No. CRG/2020/006143), Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

V.M. and B.D.M designed the study.V.M. collected the data, analysed and interpreted and drafted the article. T.K.G. involved in data analysis and draft preparation. G.R.R. reviewed the conceptualization, methodology, data analysis, and the final version of the manuscript.

Corresponding author

Correspondence to G. Ranga Rao.

Ethics declarations

Ethics approval

Not applicable.

Conflict of Interest

The authors declare no conflict of interests.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Additional File 1: Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V., Mohapatra, B.D., Ghosh, T.K. et al. Effect of MnO Content on the Oxygen Reduction Activity of MnO/C Nanostructures. Electrocatalysis 14, 788–799 (2023). https://doi.org/10.1007/s12678-023-00836-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00836-9

Keywords

Navigation