Skip to main content
Log in

Synthesis of a New Nanocomposite Based on Natural Asphalt and Its Application as a High-Performance and Eco-friendly Platform for the Electrochemical Determination of Deferiprone

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Designing efficient and economical nano-catalysts in the development of electrochemical sensors has been a constant challenge. The design of core–shell nanoarrays using natural asphalt (NA) as the core has not been found in reports. In this report, for the first time, flower-like nanostructures were synthesized by joining nickel–cobalt double hydroxide nanosheets (NiCo-LDH NSs) on NA as a precursor. The synthesis of flower-like nanostructures, abbreviated as NA@NiCo-LDH NSs, was done by an easy and one-step hydrothermal method. NA has characteristics such as availability, cost-effectiveness, high surface area due to its porous structure, and good interaction with the surface of carbon electrodes due to its carbonaceous nature. In addition, the growth of NiCo-LDH NSs on the NA leads to the improvement of electrocatalytic properties, the creation of a larger specific surface area, available active sites, and an increase of contact between analyte and nanostructures. The performance of synthetic nanostructures in the electrochemical determination of deferiprone (DFN) was evaluated satisfactorily. DFN is the first oral iron chelator and the first drug for thalassemia patient treatment. This strategy has some advantages such as cost-effectiveness, portability, good linear range (0.5–2500 µM), and low detection limit (0.19 µM) in the DFN determination. The proposed strategy can be a way to develop new nanomaterials derived from NA with green chemistry in mind. In addition, it can be a way to enter NA-based nanomaterials into other applications.

Graphical Abstract

Flower-like nanostructures based on natural asphalt (NA) coated with nickel-cobalt double hydroxide nanosheets (NiCo-LDH NSs) have been synthesized and their application as a high-performance platform for the electrocatalytic oxidation of deferiprone has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. M. Roushani, S. Farokhi, F. Shahdost-fard, Mater. Today Commun 23, 101066 (2020)

    Article  CAS  Google Scholar 

  2. T. Vrabelj, M. Finsgar, Biosensors 12, 263 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Yang, J. Wang, C. Yang, X. Zhao, S. Xie, Z. Ge, J. Electrochem. Soc 165, H247 (2018)

    Article  CAS  Google Scholar 

  4. P.K. Kalambate, Z. Huang, Y. Li, Y. Shen, M. Xie, Y. Huang, A.K. Srivastava, Trends Analyt Chem 115, 147 (2019)

    Article  CAS  Google Scholar 

  5. M. Jin, M.Y.L. Pu, Z.J. Wang, Z. Zhang, L. Zhang, A.J. Wang, J.J. Feng, A.C.S. Appl, Energy Mater 2(6), 4188 (2019)

    CAS  Google Scholar 

  6. S. Farokhi, M. Roushani, H. Hosseini, Electrochim. Acta 362, 137218 (2020)

    Article  CAS  Google Scholar 

  7. D. Wang, D. Astruc, Chem. Soc. Rev 46, 816 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. T.Y. Ma, S. Dai, S.Z. Qiao, Mater. Today 19, 265 (2016)

    Article  CAS  Google Scholar 

  9. H. Yadegari, A. Jabbari, H. Heli, A. Moosavi-Movahedi, K. Karimian, Chem. Anal. (Warsaw) 53, 5 (2008)

    CAS  Google Scholar 

  10. G. Kontoghiorghes, K. Pattichis, K. Neocleous, A. Kolnagou, Curr. Med. Chem. 11, 2161 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. T. Łuczak, Measurement 126, 242 (2018)

    Article  Google Scholar 

  12. H. Yadegari, A. Jabbari, H. Heli, A. Moosavi-Movahedi, K. Karimian, A. Khodadadi, Electrochim. Acta 53, 2907 (2008)

    Article  CAS  Google Scholar 

  13. J. Di, F. Zhang, M. Zhang, S. Bi, Electroanalysis 16, 644 (2004)

    Article  CAS  Google Scholar 

  14. F. Zhang, S. Bi, J. Liu, X. Wang, X. Yang, L. Yang, Q. Yu, J. Hu, Z. Bai, Anal. Lett. 35, 135 (2002)

    Article  CAS  Google Scholar 

  15. C. Sappey, J. R. Boelaert, S. Legrand-Poels, C. Forceille, A. Favier, J. Piette, AIDS Res. Hum. Retrovir. 11, 1049 (1995)

  16. S.A. Ozkan, B. Uslu, H.Y. Aboul-Enein, Crit. Rev. Anal. Chem 33, 155 (2003)

    Article  Google Scholar 

  17. M. Roushani, S. Farokhi, J. Braz. Chem. Soc. 26, 1034 (2015)

    CAS  Google Scholar 

  18. H. Kohzadi, M. Soleiman-Beigi, React. Kinet. Mech. Cata. 132(1), 261 (2021)

    Article  CAS  Google Scholar 

  19. H. Kohzadi, M. Soleiman-Beigi, New J Chem 44(28), 12134 (2020)

    Article  CAS  Google Scholar 

  20. S. Falah, M. Soleiman-Beigi, H. Kohzadi, Appl. Organomet. Chem 34, e5840 (2020)

    Article  CAS  Google Scholar 

  21. N. Nciri, S. Song, N. Kim, N. Cho, J. pet. environ. Biotechnol 5, 1 (2014)

    Google Scholar 

  22. F. Hekmat, H. Hosseini, S. Shahrokhian, H.E. Unalan, Energy Stor. Mater 25, 621 (2020)

    Google Scholar 

  23. S. Shahrokhian, E.K. Sanati, H. Hosseini, Nanoscale 11, 12655 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nano let 13, 3135 (2013)

    Article  CAS  Google Scholar 

  25. T. Wang, X. Liu, Z. Yan, Y. Teng, R. Li, J. Zhang, T. Peng, ACS Sustain. Chem. Eng 8, 1240 (2019)

    Article  CAS  Google Scholar 

  26. R. Jain, R.K. Yadav, J.A. Rather, J. Pharm. Anal. 3, 452 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  27. M. Hajjizadeh, A. Jabbari, H. Heli, A. Moosavi-Movahedi, A. Shafiee, K. Karimian, Anal. Biochem. 373, 337 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. H. Heli, H. Yadegari, K. Karimian, J. Exp. Nanosci. 6, 488 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Ilam University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, validation, formal analysis, investigation, resources, data curation: S. Farokhi and M. Roushani; writing—original draft preparation, writing—review and editing: S. Farokhi, N. Zalpour, and H. Hosseini; visualization: H. Hosseini; supervision: M. Roushani; project administration: M. Roushani, H. Hosseini, and M. Soleiman-Beigi; funding acquisition: M. Roushani.

Corresponding author

Correspondence to Mahmoud Roushani.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 247 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farokhi, S., Roushani, M., Hosseini, H. et al. Synthesis of a New Nanocomposite Based on Natural Asphalt and Its Application as a High-Performance and Eco-friendly Platform for the Electrochemical Determination of Deferiprone. Electrocatalysis 14, 732–740 (2023). https://doi.org/10.1007/s12678-023-00829-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00829-8

Keywords

Navigation