Skip to main content

Advertisement

Log in

Effect of TiO2 and Synthesis Strategies on Formate Oxidation: Electrochemical and Fuel Cell Approaches

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Direct formate fuel cells have gained increasing attention since formate can be obtained by CO2 reduction, being shown as a renewable power source. This paper reports the use of Pd nanoparticles supported on physical mixtures of Vulcan carbon and TiO2 in different ratios and different Pd reduction methodologies. The materials were prepared using sodium borohydride as a reducing agent and analyzed toward formate oxidation in alkaline media. The prepared electrocatalysts showed peaks of Pd face-centered cubic and TiO2 anatase and rutile phases and an average particle size between 3.7 and 7.9 nm. Experiments considering formate electro-oxidation (voltammetry and chronoamperometry) showed that the presence of TiO2 is favorably using both synthesis methodologies while single cells revealed Pd nanoparticles supported on physical mixtures of carbon and TiO2, in the proportion of 75:25 as the most efficient, which was explained by the carbon high electrical conductivity and small quantities of TiO2 working as co-catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Goldemberg, Energy Policy (2006). https://doi.org/10.1016/j.enpol.2005.03.009

    Article  Google Scholar 

  2. X.D. Wu, J.L. Guo, X. Ji, G.Q. Chen, Energy Policy (2019). https://doi.org/10.1016/j.enpol.2018.12.005

    Article  Google Scholar 

  3. M.A. Hannan, M.S.H. Lipu, P.J. Ker, R.A. Begum, V.G. Agelidis, F. Blaabjerg, App. Energy (2019). https://doi.org/10.1016/j.apenergy.2019.113404

    Article  Google Scholar 

  4. M. Child, O. Koskinen, L. Linnanen, C. Breyer, Renew. Sustain. Energy Rev. (2018). https://doi.org/10.1016/j.rser.2018.03.079

    Article  Google Scholar 

  5. J.L. Aleixandre-Tudó, L. Castelló-Cogollos, J.L. Aleixandre, R. Aleixandre-Benavent, Renew. Energy (2019). https://doi.org/10.1016/j.renene.2019.02.079

    Article  Google Scholar 

  6. A. Arshad, H.M. Ali, A. Habib, M.A. Bashir, M. Jabbal, Y. Yan, Therm. Sci. Eng. Prog. (2019). https://doi.org/10.1016/j.tsep.2018.12.008

    Article  Google Scholar 

  7. R.A. Barreto, Econ. Model. (2018). https://doi.org/10.1016/j.econmod.2018.06.019

    Article  Google Scholar 

  8. N. Edomah, Energy Rep. (2016). https://doi.org/10.1016/j.egyr.2016.01.004

    Article  Google Scholar 

  9. M.V. Moreira, G.E. da Silva, Renew. Energy (2009). https://doi.org/10.1016/j.renene.2009.01.002

    Article  Google Scholar 

  10. B.C. Ong, S.K. Kamarudin, S. Basri, Int. J. Hydrog. Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.01.117

    Article  Google Scholar 

  11. H.Q. Pham, T.T. Huynh, T.M. Pham, V.T.T. Ho, Int. J. Hydrog. Energy (2021). https://doi.org/10.1016/j.ijhydene.2020.08.278

    Article  Google Scholar 

  12. D. Ye, Q. Lan, Q. Liao, Y. Yang, R. Chen, S. Wang, Z. Liu, X. Zhu, Carbon (2022). https://doi.org/10.1016/j.carbon.2022.02.053

    Article  Google Scholar 

  13. O.C. Esan, X. Shi, Y. Dai, L. An, T.S. Zhao, Appl. Energy (2022). https://doi.org/10.1016/j.apenergy.2022.118677

    Article  Google Scholar 

  14. E. Berretti, M.V. Pagliaro, A. Giaccherini, G. Montegrossi, F. Di Benedetto, G.O. Lepore, F. D’Acapito, F. Vizza, A. Lavacchi, Electrochim. Acta (2022). https://doi.org/10.1016/j.electacta.2022.140351

    Article  Google Scholar 

  15. X. Sun, Y. Li, Int. J. Hydrog. Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.01.240

    Article  Google Scholar 

  16. A.O. Santos, J.C.M. Silva, R.M. Antoniassi, E.A. Ponzio, O.C. Alves, Int. J. Hydrog. Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.08.165

    Article  Google Scholar 

  17. S. Luo, Y. Wang, T.C. Kong, W. Pan, X. Zhao, D.Y.C. Leung, J. Power Sources (2021). https://doi.org/10.1016/j.jpowsour.2021.229526

    Article  Google Scholar 

  18. A.M. Bartrom, J.L. Haan, J. Power Sources (2012). https://doi.org/10.1016/j.jpowsour.2012.04.032

    Article  Google Scholar 

  19. R. Bock, H. Karoliussen, B.G. Pollet, M. Secanell, F. Seland, D. Stanier, O.S. Burheim, Int. J. Hydrog. Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.10.221

    Article  Google Scholar 

  20. L. Lan, J. Li, Y. Yang, L. Zhang, L. Zhang, Q. Fu, X. Zhu, Q. Liao, Carbon (2022). https://doi.org/10.1016/j.carbon.2021.12.071

    Article  Google Scholar 

  21. L. An, R. Chen, J. Power Sources (2016). https://doi.org/10.1016/j.jpowsour.2016.04.082

    Article  Google Scholar 

  22. J. Liu, H.J. Choi, L.-Y. Meng, J. Ind. Eng. Chem. (2018). https://doi.org/10.1016/j.jiec.2018.02.021

    Article  Google Scholar 

  23. M.T. Anwar, X. Yan, S. Shen, N. Husnain, F. Zhu, L. Luo, J. Zhang, Int. J. Hydrog. Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.10.152

    Article  Google Scholar 

  24. E. Antolini, Appl. Catal. B: Environ. (2018). https://doi.org/10.1016/j.apcatb.2018.06.029

    Article  Google Scholar 

  25. A.S. Bandarenka, M.T.M. Koper, J. Catal. (2013). https://doi.org/10.1016/j.jcat.2013.05.006

    Article  Google Scholar 

  26. J. Matos, A. Borodzinski, A.M. Zychora, P. Kedzierzawski, B. Mierzwa, K. Juchniewicz, M. Mazurkiewicz, J.C. Hernández-Garrido, Appl. Catal. B Environ. (2015). https://doi.org/10.1016/j.apcatb.2014.07.063

    Article  Google Scholar 

  27. S.-Y. Huang, P. Ganesan, B.N. Popov, Appl. Catal. B: Environ. (2011). https://doi.org/10.1016/j.apcatb.2010.11.026

    Article  Google Scholar 

  28. Y. Wang, J. Wang, G. Han, C. Du, Y. Sun, L. Du, M. An, G. Yin, Y. Gao, Y. Song, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2018.12.211

    Article  Google Scholar 

  29. S. Samad, K.S. Loh, W.Y. Wong, T.K. Lee, J. Sunarso, S.T. Chong, W.R. Wan Daud, Int. J. Hydrog. Energy. (2018). https://doi.org/10.1016/j.ijhydene.2018.02.154

  30. P. Sabatier, Ber. Dtch. Chem. Ges. (1911). https://doi.org/10.1002/cber.19110440303

    Article  Google Scholar 

  31. A. Vittadini, A. Selloni, F.P. Rotzinger, M. Grätzel, Phys. Rev. Lett. (1998). https://doi.org/10.1103/PhysRevLett.81.2954

    Article  Google Scholar 

  32. Q. Lv, M. Yin, X. Zhao, C. Li, C. Liu, W. Xing, J. Power Sources (2012). https://doi.org/10.1016/j.jpowsour.2012.06.051

    Article  Google Scholar 

  33. S.G. da Silva, J.C.M. Silva, G.S. Buzzo, R.F.B. De Souza, E.V. Spinacé, A.O. Neto, M.H.M.T. Assumpção, Int. J. Hydrog. Energy (2014). https://doi.org/10.1016/j.ijhydene.2014.04.169

    Article  Google Scholar 

  34. J.C.M. Silva, M.H.M.T. Assumpção, P. Hammer, A.O. Neto, E.V. Spinacé, E.A. Baranova, ChemElectroChem (2017). https://doi.org/10.1002/celc.201600701

    Article  Google Scholar 

  35. M.H.M.T. Assumpção, S.G. da Silva, R.F.B. De Souza, G.S. Buzzo, E.V. Spinacé, M.C. Santos, A.O. Neto, J.C.M. Silva, J. Power Sources (2014). https://doi.org/10.1016/j.jpowsour.2014.06.025

    Article  Google Scholar 

  36. Y. Song, C. Wei, X. Zhang, X. Wei, X. Song, Z. Sun, Mat. Chem. Phys. (2015). https://doi.org/10.1016/j.matchemphys.2015.05.030

    Article  Google Scholar 

  37. W.-L. Qu, Z.-B. Wang, Y. Gao, C. Deng, R.-H. Wang, L. Zhao, X.-L. Sui, Int. J. Hydrog. Energy (2018). https://doi.org/10.1016/j.ijhydene.2017.11.046

    Article  Google Scholar 

  38. C. Wang, X. Cai, Y. Chen, Z. Cheng, X. Luo, S. Mo, L. Jia, P. Lin, Z. Yang, Chem. Eng. J. (2017). https://doi.org/10.1016/j.cej.2017.02.033

    Article  Google Scholar 

  39. A. Lasia, Electrochemical impedance spectroscopy and its applications, in: Modern aspects of electrochemistry (Springer, 2002) pp. 143–248

  40. A.R.C. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, ACS Appl. Energy Mat. (2020)

  41. Y.-H. Qin, Y. Zhuang, R.-L. Lv, T.-L. Wang, W.-G. Wang, C.-W. Wang, Electrochim. Acta (2015). https://doi.org/10.1016/j.electacta.2014.12.050

    Article  Google Scholar 

  42. F. Zhang, D. Zhou, M. Zhou, J. Energy Chem. (2016). https://doi.org/10.1016/j.jechem.2015.10.013

    Article  Google Scholar 

  43. J. Noborikawa, J. Lau, J. Ta, S. Hu, L. Scudiero, S. Derakhshan, S. Ha, J.L. Haan, Electrochim. Acta (2014). https://doi.org/10.1016/j.electacta.2014.04.188

    Article  Google Scholar 

  44. A.E. Alvarez, A.N. Gravina, J.M. Sieben, P.V. Messina, M.M.E. Duarte, Mat. Sci. Eng.: B (2016). https://doi.org/10.1016/j.mseb.2016.05.017

    Article  Google Scholar 

  45. C.-S. Chen, F.-M. Pan, Appl. Catal. B: Environ. (2009). https://doi.org/10.1016/j.apcatb.2009.07.008

    Article  Google Scholar 

  46. N. Rajalakshmi, N. Lakshmi, K.S. Dhathathreyan, Int. J. Hydrog. Energy (2008). https://doi.org/10.1016/j.ijhydene.2008.09.032

    Article  Google Scholar 

  47. W.J. Wang, S. Hwang, T. Kim, S. Ha, L. Scudiero, Electrochim. Acta (2021). https://doi.org/10.1016/j.electacta.2021.138531

    Article  Google Scholar 

  48. J.T. Gray, S.W. Kang, J.-I. Yang, N. Kruse, J.-S. McEwen, J.C. Park, S. Ha, Appl. Catal. B: Environ. (2020). https://doi.org/10.1016/j.apcatb.2019.118478

    Article  Google Scholar 

  49. J. Shim, C.-R. Lee, H.-K. Lee, J.-S. Lee, E.J. Cairns, J. Power Sources (2001). https://doi.org/10.1016/S0378-7753(01)00817-5

    Article  Google Scholar 

  50. J. Bai, Q. Xue, Y. Zhao, J.-X. Jiang, J.-H. Zeng, S.-B. Yin, Y. Chen, A.C.S. Sustain, Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.8b06193

    Article  Google Scholar 

  51. M. Choun, K. Ham, D. Shin, J.K. Lee, J. Lee, Catal. Today (2017). https://doi.org/10.1016/j.cattod.2017.04.026

    Article  Google Scholar 

  52. S. Hong, S. Chung, J. Park, J.P. Hwang, C.H. Lee, S. Uhm, S. Bong, J. Lee, ACS Catal. (2021). https://doi.org/10.1021/acscatal.0c03555

    Article  Google Scholar 

  53. J. Jiang, A. Wieckowski, Electrochem. Commun. (2012). https://doi.org/10.1016/j.elecom.2012.02.017

    Article  Google Scholar 

  54. T. Takamura, F. Mochimaru, Electrochim. Acta (1969). https://doi.org/10.1016/0013-4686(69)80008-3

    Article  Google Scholar 

  55. M. Choun, S. Hong, J. Lee, J. Electrochem. Soc. (2018). https://doi.org/10.1149/2.0341815jes

    Article  Google Scholar 

  56. M. Ahadi, M. Tam, J. Stumper, M. Bahrami, Int. J. Hydrog. Energy (2019). https://doi.org/10.1016/j.ijhydene.2018.12.016

    Article  Google Scholar 

  57. G.R. Mirshekari, A.P. Shirvanian, J. Electroanal. Chem. (2019). https://doi.org/10.1016/j.jelechem.2019.03.077

    Article  Google Scholar 

  58. G.D. Bhowmick, M.T. Noori, I. Das, B. Neethu, M.M. Ghangrekar, A. Mitra, Int. J. Hydrog. Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.02.188

    Article  Google Scholar 

  59. M. Kübler, T. Jurzinsky, D. Ziegenbalg, C. Cremers, J. Power Sources (2018). https://doi.org/10.1016/j.jpowsour.2017.07.114

    Article  Google Scholar 

  60. M. Choun, J. Lee, J. Energy Chem. (2016). https://doi.org/10.1016/j.jechem.2016.04.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Instituto de Pesquisa Energéticas e Nucleares by TEM measurements, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), and LNNano for XRD analysis. The authors are also grateful to Evonik Degussa Brasil Ltda and Cabot Corporation for TiO2 and Vulcan Carbon samples.

Funding

This study was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (407674/2016–0; 408430/2016–8; 169966/2017–8, 405546/2018–1; 103085/2019–0, and 403961/2021–1), Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (2017/21097–3, 2019/23342–0 and 2020/01050–5), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil – CAPES, Finance Code 001, 88887.504861/2020–00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mônica Helena Marcon Teixeira Assumpção.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guimarães, V.P., Nandenha, J., Orzari, L.O. et al. Effect of TiO2 and Synthesis Strategies on Formate Oxidation: Electrochemical and Fuel Cell Approaches. Electrocatalysis 14, 221–231 (2023). https://doi.org/10.1007/s12678-022-00789-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00789-5

Keywords

Navigation