Skip to main content

Advances of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to CO: a Mini Review

Abstract

Electrocatalytic CO2 reduction to fuels powered by renewable electricity is a potential clean strategy to replace fossil fuels and address climate change caused by increasing CO2 emissions. In this work, the electrocatalytic CO2 reduction process was briefly introduced; the latest literature on the electrocatalytic CO2 reduction to CO by cobalt phthalocyanine (CoPc) was summarized. The structure, catalytic activity, and improvement strategies of CoPc were analyzed in detail. Then, the possible mechanism for the electrocatalytic CO2 reduction to CO was elucidated. Finally, the challenges and possible solutions of cobalt-based catalysts in electrocatalytic CO2 reduction were discussed. We believe it will serve as an up-to-date reference for the design of more efficient and stable cobalt-based catalysts for CO2 reduction, providing new insights and perspectives for further development of excellent catalytic materials.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. R.J. Andres, T.A. Boden, F.M. Bréon, P. Ciais, S. Davis, D. Erickson, J.S. Gregg, A. Jacobson, G. Marland, J. Miller, T. Oda, J.G.J. Olivier, M.R. Raupach, P. Rayner, K. Treanton, A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9, 1845–1871 (2012)

    CAS  Article  Google Scholar 

  2. D.C. Frank, J. Esper, C.C. Raible, U. Buntgen, V. Trouet, B. Stocker, F. Joos, Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463, 527–530 (2010)

    CAS  PubMed  Article  Google Scholar 

  3. S.E. Schwartz, Uncertainty in climate sensitivity: Causes, consequences, challenges. Energy Environ. Sci. 1, 430–453 (2008)

    CAS  Article  Google Scholar 

  4. W. da Silva Freitas, A. D’Epifanio, B. Mecheri, Electrocatalytic CO2 reduction on nanostructured metal-based materials: Challenges and constraints for a sustainable pathway to decarbonization, Journal of CO2 Utilization 50, 101579 (2021)

  5. S. Piao, P. Ciais, Y. Huang, Z. Shen, S. Peng, J. Li, L. Zhou, H. Liu, Y. Ma, Y. Ding, P. Friedlingstein, C. Liu, K. Tan, Y. Yu, T. Zhang, J. Fang, The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010)

    CAS  PubMed  Article  Google Scholar 

  6. A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M.M. Maroto-Valer, A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 43, 8049–8080 (2014)

    CAS  PubMed  Article  Google Scholar 

  7. J. Shi, Y. Jiang, Z. Jiang, X. Wang, X. Wang, S. Zhang, P. Han, C. Yang, Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 44, 5981–6000 (2015)

    CAS  PubMed  Article  Google Scholar 

  8. D.T. Whipple, P.J.A. Kenis, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. The Journal of Physical Chemistry Letters 1, 3451–3458 (2010)

    CAS  Article  Google Scholar 

  9. A. Goeppert, M. Czaun, J.P. Jones, G.K. Surya Prakash, G.A. Olah, Recycling of carbon dioxide to methanol and derived products - Closing the loop, Chemical Society Reviews 43, 7995–8048 (2014)

  10. D.R. Kauffman, J. Thakkar, R. Siva, C. Matranga, P.R. Ohodnicki, C. Zeng, R. Jin, Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl. Mater. Interfaces. 7, 15626–15632 (2015)

    CAS  PubMed  Article  Google Scholar 

  11. M. Huai, Z. Yin, F. Wei, G. Wang, L. Xiao, J. Lu, L. Zhuang, Electrochemical CO2 reduction on heterogeneous cobalt phthalocyanine catalysts with different carbon supports. Chem. Phys. Lett. 754, 137655 (2020)

    CAS  Article  Google Scholar 

  12. W.J.J. Huijgen, R.N.J. Comans, G.-J. Witkamp, Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Convers. Manage. 48, 1923–1935 (2007)

    CAS  Article  Google Scholar 

  13. G.F. Manbeck, E. Fujita, A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide. J. Porphyrins Phthalocyanines 19, 45–64 (2015)

    CAS  Article  Google Scholar 

  14. C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan, M. Chen, Y. Kong, C. Lee, D. Liu, S. Li, J. Liu, L. Song, G. Chen, Q. Yan, G. Yu, Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nature Sustainability 4, 868–876 (2021)

    Article  Google Scholar 

  15. L. Ji, L. Chang, Y. Zhang, S. Mou, T. Wang, Y. Luo, Z. Wang, X. Sun, Electrocatalytic CO2 reduction to alcohols with high selectivity over a two-dimensional Fe2P2S6 nanosheet. ACS Catal. 9, 9721–9725 (2019)

    CAS  Article  Google Scholar 

  16. J. Annie Modestra, B. Navaneeth, S. Venkata Mohan, Bio-electrocatalytic reduction of CO2: Enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis. J. CO2 Utiliz. 10, 78–87 (2015)

  17. L. Ponsard, E. Nicolas, N.H. Tran, S. Lamaison, D. Wakerley, T. Cantat, M. Fontecave, Coupling electrocatalytic CO2 reduction with thermocatalysis enables the formation of a lactone monomer. Chemsuschem 14, 2198–2204 (2021)

    CAS  PubMed  Article  Google Scholar 

  18. E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009)

    CAS  PubMed  Article  Google Scholar 

  19. Y. Qu, X. Duan, Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013)

    CAS  PubMed  Article  Google Scholar 

  20. J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014)

    CAS  PubMed  Article  Google Scholar 

  21. J. Tang, W. Sun, H. Tang, M. Radosz, Y. Shen, Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38, 2037–2039 (2005)

    CAS  Article  Google Scholar 

  22. B.E. Gurkan, d.l.J.C. Fuente, E.M. Mindrup, L.E. Ficke, B.F. Goodrich, E.A. Price, W.F. Schneider, J.F. Brennecke, Equimolar CO2 absorption by anion-functionalized ionic liquids. J. Am. Chem. Soc. 132, 2116–2117 (2010)

  23. Y. Oh, X. Hu, Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction. Chem. Soc. Rev. 42, 2253–2261 (2013)

    CAS  PubMed  Article  Google Scholar 

  24. A. Razzaq, A. Sinhamahapatra, T.-H. Kang, C.A. Grimes, J.-S. Yu, S.-I. In, Efficient solar light photoreduction of CO2 to hydrocarbon fuels via magnesiothermally reduced TiO2 photocatalyst. Appl. Catal. B 215, 28–35 (2017)

    CAS  Article  Google Scholar 

  25. I.I. Alkhatib, C. Garlisi, M. Pagliaro, K. Al-Ali, G. Palmisano, Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catal. Today 340, 209–224 (2020)

    CAS  Article  Google Scholar 

  26. V. Butera, H. Detz, Photochemical CO2 conversion on pristine and Mg-doped gallium nitride (GaN): A comprehensive DFT study based on a cluster model approach. Mater. Chem. Front. (2021)

  27. Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo, M.T.M. Koper, Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels, Nature. Energy 4, 732–745 (2019)

    CAS  Google Scholar 

  28. K. Torbensen, B. Boudy, D. Joulié, N. von Wolff, M. Robert, Emergence of CO2 electrolyzers including supported molecular catalysts. Curr. Opin. Electrochem. 24, 49–55 (2020)

    CAS  Article  Google Scholar 

  29. P. Gotico, W. Leibl, Z. Halime, A. Aukauloo, Shaping the electrocatalytic performance of metal complexes for CO2 reduction. ChemElectroChem 8, 3472–3481 (2021)

    CAS  Article  Google Scholar 

  30. W. Ma, X. He, W. Wang, S. Xie, Q. Zhang, Y. Wang, Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. (2021)

  31. S. Bajracharya, S. Srikanth, G. Mohanakrishna, R. Zacharia, D.P. Strik, D. Pant, Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects. J. Power Sources 356, 256–273 (2017)

    CAS  Article  Google Scholar 

  32. J. Zabranska, D. Pokorna, Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol. Adv. 36, 707–720 (2018)

    CAS  PubMed  Article  Google Scholar 

  33. K.K. Sahoo, G. Goswami, D. Das, Biotransformation of methane and carbon dioxide into high-value products by methanotrophs: Current state of art and future prospects. Front. Microbiol. 12, 636486 (2021)

    PubMed  PubMed Central  Article  Google Scholar 

  34. A.A. Olajire, A review of mineral carbonation technology in sequestration of CO2. J. Petrol. Sci. Eng. 109, 364–392 (2013)

    CAS  Article  Google Scholar 

  35. J. Hao, W. Shi, Transition metal (Mo, Fe Co, and Ni)-based catalysts for electrochemical CO2 reduction. Chin. J. Catal. 39, 1157–1166 (2018)

    CAS  Article  Google Scholar 

  36. B. Kumar, J.P. Brian, V. Atla, S. Kumari, K.A. Bertram, R.T. White, J.M. Spurgeon, New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction. Catal. Today 270, 19–30 (2016)

    CAS  Article  Google Scholar 

  37. F.P. Garcia de Arquer, O.S. Bushuyev, P. De Luna, C.T. Dinh, A. Seifitokaldani, M.I. Saidaminov, C.S. Tan, L.N. Quan, A. Proppe, M.G. Kibria, S.O. Kelley, D. Sinton, E.H. Sargent, 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 30, e1802858 (2018)

    PubMed  Article  CAS  Google Scholar 

  38. R. He, A. Zhang, Y. Ding, T. Kong, Q. Xiao, H. Li, Y. Liu, J. Zeng, Achieving the widest range of syngas proportions at high current density over cadmium sulfoselenide nanorods in CO2 electroreduction. Adv. Mater. 30, 1705872 (2018)

    Article  CAS  Google Scholar 

  39. A. Chapovetsky, M. Welborn, J.M. Luna, R. Haiges, T.F. Miller 3rd., S.C. Marinescu, Pendant hydrogen-bond donors in cobalt catalysts independently enhance CO2 reduction. ACS Cent. Sci. 4, 397–404 (2018)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. X. Yang, Hydrogenation of carbon dioxide catalyzed by pnp pincer iridium, iron, and cobalt complexes: A computational design of base metal catalysts. ACS Catal. 1, 849–854 (2011)

    CAS  Article  Google Scholar 

  41. Y. Hori, K. Kikuchi, S. Suzuki, Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14, 1695–1698 (1985)

    Article  Google Scholar 

  42. M. Dunwell, Q. Lu, J.M. Heyes, J. Rosen, J.G. Chen, Y. Yan, F. Jiao, B. Xu, The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017)

    CAS  PubMed  Article  Google Scholar 

  43. T. Hatsukade, K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Phys. Chem. Chem. Phys. 16, 13814–13819 (2014)

    CAS  PubMed  Article  Google Scholar 

  44. K.G. Schmitt, A.A. Gewirth, In situ surface-enhanced raman spectroscopy of the electrochemical reduction of carbon dioxide on silver with 3,5-diamino-1,2,4-triazole. J. Phys. Chem. C 118, 17567–17576 (2014)

    CAS  Article  Google Scholar 

  45. L. Zhang, Z. Wang, N. Mehio, X. Jin, S. Dai, Thickness- and particle-size-dependent electrochemical reduction of carbon dioxide on thin-layer porous silver electrodes. Chemsuschem 9, 428–432 (2016)

    CAS  PubMed  Article  Google Scholar 

  46. N. Hoshi, Y. Hori, Electrochemical reduction of carbon dioxide at a series of platinum single crystal electrodes. Electrochim. Acta 45, 4263–4270 (2000)

    CAS  Article  Google Scholar 

  47. Y. Tomita, S. Teruya, O. Koga, Y. Hori, Electrochemical reduction of carbon dioxide at a platinum electrode in acetonitrile-water mixtures. J. Electrochem. Soc. 147, 4164–4167 (2000)

    CAS  Article  Google Scholar 

  48. P. Kang, T.J. Meyer, M. Brookhart, Selective electrocatalytic reduction of carbon dioxide to formate by a water-soluble iridium pincer catalyst. Chem. Sci. 4 (2013)

  49. P. Kang, S. Zhang, T.J. Meyer, M. Brookhart, Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes. Angew Chem Int Ed Engl 53, 8709–8713 (2014)

    CAS  PubMed  Article  Google Scholar 

  50. H. Nagao, T. Mizukawa, K. Tanaka, Carbon-carbon bond formation in the electrochemical reduction of carbon dioxide catalyzed by a ruthenium complex. Inorg. Chem. 33, 3415–3420 (1994)

    CAS  Article  Google Scholar 

  51. S. Ramakrishnan, C.E.D. Chidsey, Initiation of the electrochemical reduction of CO2 by a singly reduced ruthenium(ii) bipyridine complex. Inorg. Chem. 56, 8326–8333 (2017)

    CAS  PubMed  Article  Google Scholar 

  52. A.K. Singh, R. Mukherjee, Cobalt(II) and cobalt(III) complexes of thioether-containing hexadentate pyrazine amide ligands: C-S bond cleavage and cyclometallation reaction. Dalton Transac. 260–270 (2008) 

  53. C. Li, X. Tong, P. Yu, W. Du, J. Wu, H. Rao, Z.M. Wang, Carbon dioxide photo/electroreduction with cobalt. Journal of Materials Chemistry A 7, 16622–16642 (2019)

    CAS  Article  Google Scholar 

  54. S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016)

    CAS  PubMed  Article  Google Scholar 

  55. P. Su, K. Iwase, T. Harada, K. Kamiya, S. Nakanishi, Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO2 electrochemical reduction. Chem. Sci. 9, 3941–3947 (2018)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. J.-H. Liu, L.-M. Yang, E. Ganz, Electrochemical reduction of CO2 by single atom catalyst TM–TCNQ monolayers. Journal of Materials Chemistry A 7, 3805–3814 (2019)

    CAS  Article  Google Scholar 

  57. H. Yang, Q. Lin, Y. Wu, G. Li, Q. Hu, X. Chai, X. Ren, Q. Zhang, J. Liu, C. He, Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energ. 70, 104454, (2020)

  58. J.-P. Grote, A.R. Zeradjanin, S. Cherevko, A. Savan, B. Breitbach, A. Ludwig, K.J.J. Mayrhofer, Screening of material libraries for electrochemical CO2 reduction catalysts – Improving selectivity of Cu by mixing with Co. J. Catal. 343, 248–256 (2016)

    CAS  Article  Google Scholar 

  59. Y. Takatsuji, I. Nakata, M. Morimoto, T. Sakakura, R. Yamasaki, T. Haruyama, Highly selective methane production through electrochemical CO2 reduction by electrolytically plated Cu-Co Electrode. Electrocatalysis 10, 29–34 (2018)

    Article  CAS  Google Scholar 

  60. C. Dai, L. Sun, J. Song, H. Liao, A.C. Fisher, Z.J. Xu, Selective electroreduction of carbon dioxide to formic acid on cobalt-decorated copper thin films. Small Methods 3, 1900362 (2019)

    CAS  Article  Google Scholar 

  61. R. Parajuli, J.B. Gerken, K. Keyshar, I. Sullivan, N. Sivasankar, K. Teamey, S.S. Stahl, E.B. Cole, Integration of anodic and cathodic catalysts of earth-abundant materials for efficient, scalable CO2 reduction. Top. Catal. 58, 57–66 (2014)

    Google Scholar 

  62. V.S.K. Yadav, M.K. Purkait, Electrochemical studies for CO2 reduction using synthesized Co3O4 (anode) and Cu2O (cathode) as electrocatalysts. Energy Fuels 29, 6670–6677 (2015)

    CAS  Article  Google Scholar 

  63. V.S.K. Yadav, M.K. Purkait, Electrochemical reduction of CO2 to HCOOH using zinc and cobalt oxide as electrocatalysts. New J. Chem. 39, 7348–7354 (2015)

    CAS  Article  Google Scholar 

  64. S. Gao, X. Jiao, Z. Sun, W. Zhang, Y. Sun, C. Wang, Q. Hu, X. Zu, F. Yang, S. Yang, L. Liang, J. Wu, Y. Xie, Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem. Int. Ed. 55, 698–702 (2016)

    CAS  Article  Google Scholar 

  65. D. Pan, X. Ye, Y. Cao, S. Zhu, X. Chen, M. Chen, D. Zhang, G. Li, Photoanode driven photoelectrocatalytic system for CO2 reduction to formic acid by using CoOx cathode. Appl. Surf. Sci. 511, 145497 (2020)

    CAS  Article  Google Scholar 

  66. H. Ogihara, T. Maezuru, Y. Ogishima, I. Yamanaka, Electrochemical reduction of CO2 to CO by a Co-N-C electrocatalyst and PEM reactor at ambient conditions. ChemistrySelect 1, 5533–5537 (2016)

    CAS  Article  Google Scholar 

  67. J. Guo, J. Huo, Y. Liu, W. Wu, Y. Wang, M. Wu, H. Liu, G. Wang, Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: From synthesis to application. Small Methods 3, 1900159 (2019)

    Article  CAS  Google Scholar 

  68. J. Li, P. Pršlja, T. Shinagawa, A.J. Martín Fernández, F. Krumeich, K. Artyushkova, P. Atanassov, A. Zitolo, Y. Zhou, R. García-Muelas, N. López, J. Pérez-Ramírez, F. Jaouen, Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catalysis 9, 10426–10439 (2019)

  69. W. Liu, Z. Miao, Z. Li, X. Wu, P. Zhou, J. Zhao, H. Zhao, W. Si, J. Zhou, S. Zhuo, Electroreduction of CO2 catalyzed by Co@N-C materials. J. CO2 Utiliz. 32, 241–250 (2019)

  70. T. Atoguchi, A. Aramata, A. Kazusaka, M. Enyo, Cobalt(II)–tetraphenylporphyrin–pyridine complex fixed on a glassy carbon electrode and its prominent catalytic activity for reduction of carbon dioxide. J. Chem. Soc. Chem. Commun. 156–157 (1991)

  71. G. Ramírez, G. Ferraudi, Y.Y. Chen, E. Trollund, D. Villagra, Enhanced photoelectrochemical catalysis of CO2 reduction mediated by a supramolecular electrode of packed CoII(tetrabenzoporphyrin). Inorg. Chim. Acta 362, 5–10 (2009)

    Article  CAS  Google Scholar 

  72. D. Quezada, J. Honores, M. García, F. Armijo, M. Isaacs, Electrocatalytic reduction of carbon dioxide on a cobalt tetrakis(4-aminophenyl)porphyrin modified electrode in BMImBF4. New J. Chem. 38, 3606–3612 (2014)

    CAS  Article  Google Scholar 

  73. K. Alenezi, Electrocatalytic study of carbon dioxide reduction by Co(TPP)Cl complex. J. Chem. 2016, 1–7 (2016)

    Article  CAS  Google Scholar 

  74. C.L. Yao, J.C. Li, W. Gao, Q. Jiang, Cobalt-porphine catalyzed CO2 electro-reduction: A novel protonation mechanism. Phys Chem Chem Phys 19, 15067–15072 (2017)

    CAS  PubMed  Article  Google Scholar 

  75. Y. Bochlin, E. Korin, A. Bettelheim, Different pathways for CO2 electrocatalytic reduction by confined CoTMPyP in electrodeposited reduced graphene oxide. ACS Applied Energy Materials 2, 8434–8440 (2019)

    CAS  Article  Google Scholar 

  76. B. Hu, W. Xie, R. Li, Z. Pan, S. Song, Y. Wang, How does the ligands structure surrounding metal-N4 of Co-based macrocyclic compounds affect electrochemical reduction of CO2 performance? Electrochim. Acta 331, 135283 (2020)

    CAS  Article  Google Scholar 

  77. S. Fernández, S. Cañellas, F. Franco, J.M. Luis, M.A. Pericas, J. Lloret‐Fillol, The dual effect of coordinating –NH groups and light in the electrochemical CO2 reduction with pyridylamino Co complexes Chem. Electro. Chem. 8, 4456–4465 (2021)

  78. J. Shen, R. Kortlever, R. Kas, Y.Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K.J. Schouten, G. Mul, M.T. Koper, Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 1–8 (2015)

    Google Scholar 

  79. M. Abdinejad, A. Seifitokaldani, C. Dao, E.H. Sargent, X.-A. Zhang, H.B. Kraatz, enhanced electrochemical reduction of CO2 catalyzed by cobalt and iron amino porphyrin complexes. ACS Applied Energy Materials 2, 1330–1335 (2019)

    CAS  Article  Google Scholar 

  80. Y. Wu, G. Hu, C.L. Rooney, G.W. Brudvig, H. Wang, Heterogeneous nature of electrocatalytic CO/CO2 reduction by cobalt phthalocyanines. Chemsuschem 13, 6296–6299 (2020)

    CAS  PubMed  Article  Google Scholar 

  81. J. Hawecker, J.-M. Lehn, R. Ziessel, Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2′-bipyridine), J. Chem. Soc., Chem. Commun. 984, 328–330 (1984)

  82. C.M. Bolinger, N. Story, B.P. Sullivan, T.J. Meyer, electrocatalytic reduction of carbon dioxide by 2,2’-bipyridine complexes of rhodium and iridium. Inorg. Chem. 27, 4582–4587 (1988)

    CAS  Article  Google Scholar 

  83. H. Ishida, K. Tanaka, T. Tanaka, Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the Formation of CO and HCOO, Organometallics 6, 181–186 (1987)

    CAS  Google Scholar 

  84. D.L. DuBois, A. Miedaner, R.C. Haltiwanger, Electrochemical reduction of CO2 catalyzed by [Pd(triphosphine)(solvent)](BF4)2 complexes: Synthetic and mechanistic studies. J. Am. Chem. Soc. 113, 8753–8764 (1991)

    CAS  Article  Google Scholar 

  85. S. Slater, J.H. Wagenknecht, Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl. J. Am. Chem. Soc. 106, 5367–5368 (1984)

    CAS  Article  Google Scholar 

  86. J.W. Raebiger, J.W. Turner, B.C. Noll, C.J. Curtis, A. Miedaner, B. Cox, D.L. DuBois, electrochemical reduction of CO2 to CO catalyzed by a bimetallic palladium complex. Organometallics 25, 3345–3351 (2006)

    CAS  Article  Google Scholar 

  87. K. Takahashi, K. Hiratsuka, H. Sasaki, S. Toshima, Electrocatalytic behavior of metal porphyrins in the reduction of carbon dioxide. Chem. Lett. 8, 305–308 (1979)

    Article  Google Scholar 

  88. N. Kornienko, Y. Zhao, C.S. Kley, C. Zhu, D. Kim, S. Lin, P. Yang, Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015)

    CAS  PubMed  Article  Google Scholar 

  89. C. Costentin, S. Drouet, M. Robert, J.-M. Save´ant, A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst, Sci. 338, 90–94 (2012)

  90. X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017)

    PubMed  PubMed Central  Article  Google Scholar 

  91. J. Schneider, H. Jia, J.T. Muckerman, E. Fujita, Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem. Soc. Rev. 41, 2036–2051 (2012)

    CAS  PubMed  Article  Google Scholar 

  92. D.A. Tryk, T. Yamamoto, M. Kokubun, K. Hirota, K. Hashimoto, M. Okawa, A. Fujishima, Recent developments in electrochemical and photoelectrochemical CO2 reduction: involvement of the (CO2)2 dimer radical anion. Appl. Organomet. Chem. 15, 113–120 (2001)

    CAS  Article  Google Scholar 

  93. R. B. A., S.-K. A., T.M. R., Z. W., W.D. T., K.P. J., M.R. I., Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials, Science 334, 643–644 (2011)

  94. K. Chandrasekaran, L.M. Bockris, In-situ spectroscopic investigation of adsorbed intermediate radicals in electrochemical reactions: CO2 on platinum. Surf. Sci. 185, 495–514 (1987)

    CAS  Article  Google Scholar 

  95. Z. Chen, J.J. Concepcion, M.K. Brennaman, P. Kang, M.R. Norris, P.G. Hoertz, T.J. Meyer, Splitting CO2 into CO and O2 by a single catalyst. Proc. Natl. Acad. Sci. 109, 15606–15611 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. J.E. Pander, A. Fogg, A.B. Bocarsly, Utilization of electropolymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media. ChemCatChem 8, 3536–3545 (2016)

    CAS  Article  Google Scholar 

  97. V.S.K. Yadav, M.K. Purkait, Effect of copper oxide electrocatalyst on CO2 reduction using Co3O4 as anode. Journal of Science: Advanced Materials and Devices 1, 330–336 (2016)

    Google Scholar 

  98. Y.Y. Birdja, J. Shen, M.T.M. Koper, Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid. Catal. Today 288, 37–47 (2017)

    CAS  Article  Google Scholar 

  99. S. Abner, A. Chen, Design and mechanistic study of advanced cobalt-based nanostructured catalysts for electrochemical carbon dioxide reduction. Appl. Catal. B 301, 120761 (2022)

    CAS  Article  Google Scholar 

  100. M. Abdinejad, M.N. Hossain, H.-B. Kraatz, Homogeneous and heterogeneous molecular catalysts for electrochemical reduction of carbon dioxide. RSC Adv. 10, 38013–38023 (2020)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, Z. Jin, Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Advanced Science 5, 1700275 (2018)

    PubMed  Article  CAS  Google Scholar 

  102. M. Todoroki, K. Hara, A. Kudo, T. Sakata, Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution. J. Electroanal. Chem. 394, 199–203 (1995)

    Article  Google Scholar 

  103. L. Sun, G.K. Ramesha, P.V. Kamat, J.F. Brennecke, Switching the reaction course of electrochemical CO2 reduction with ionic liquids. Langmuir 30, 6302–6308 (2014)

    CAS  PubMed  Article  Google Scholar 

  104. J.M. Assour, W.K. Kahn, Electron spin resonance of α-and β-cobalt phthalocyanine. J. Am. Chem. Soc. 87, 207–212 (1965)

    CAS  Article  Google Scholar 

  105. M. Wojdyła, M. Rębarz, W. Bała, B. Derkowska, Z. łukasiak, Optical properties of vacuum sublimed cobalt phthalocyanine (CoPc) thin layers. Molecul. Cryst. Liquid Cryst. 485, 974–989 (2008)

  106. T. Kroll, V.Y. Aristov, O.V. Molodtsova, Y.A. Ossipyan, D.V. Vyalikh, B. Buchner, M. Knupfer, Spin and orbital ground state of Co in cobalt phthalocyanine. J. Phys. Chem. A 113, 8917–8922 (2009)

    CAS  PubMed  Article  Google Scholar 

  107. M. Zhu, R. Ye, K. Jin, N. Lazouski, K. Manthiram, Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 3, 1381–1386 (2018)

    CAS  Article  Google Scholar 

  108. V.V. Maslyuk, V.Y. Aristov, O.V. Molodtsova, D.V. Vyalikh, V.M. Zhilin, Y.A. Ossipyan, T. Bredow, I. Mertig, M. Knupfer, The electronic structure of cobalt phthalocyanine. Appl. Phys. A 94, 485–489 (2008)

    Article  CAS  Google Scholar 

  109. J.H. Weber, D.H. Busch, Complexes derived from strong field ligands. XIX. Magnetic properties of transition metal derivatives of 4, 4′, 4″, 4‴-tetrasulfophthalocyanine, Inorganic Chem. 4, 469–471 (1965)

  110. K. Sakamoto, E. Ohno, Synthesis of cobalt phthalocyanine derivatives and their cyclic voltammograms. Dyes Pigm. 35, 375–386 (1997)

    CAS  Article  Google Scholar 

  111. Y. Pan, W. Chen, S. Lu, Y. Zhang, Novel aqueous soluble cobalt phthalocyanine: Synthesis and catalytic activity on oxidation of 2-mercaptoethanol. Dyes Pigm. 66, 115–121 (2005)

    CAS  Article  Google Scholar 

  112. V. Iliev, V. Alexiev, L. Bilyarska, Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds. J. Mol. Catal. A: Chem. 137, 15–22 (1999)

    CAS  Article  Google Scholar 

  113. M. Hassanein, M. Abdo, S. Gerges, S. El-Khalafy, Study of the oxidation of 2-aminophenol by molecular oxygen catalyzed by cobalt(II) phthalocyaninetetrasodiumsulfonate in water. J. Mol. Catal. A: Chem. 287, 53–56 (2008)

    CAS  Article  Google Scholar 

  114. A.B. Sorokin, Phthalocyanine metal complexes in catalysis. Chem. Rev. 113, 8152–8191 (2013)

    CAS  PubMed  Article  Google Scholar 

  115. Ü. Demirbaş, C. Göl, B. Barut, R. Bayrak, M. Durmuş, H. Kantekin, İ Değirmencioğlu, Peripherally and non-peripherally tetra-benzothiazole substituted metal-free zinc (II) and lead (II) phthalocyanines: Synthesis, characterization, and investigation of photophysical and photochemical properties. J. Mol. Struct. 1130, 677–687 (2017)

    Article  CAS  Google Scholar 

  116. K.A. Grice, Carbon dioxide reduction with homogenous early transition metal complexes: Opportunities and challenges for developing CO2 catalysis. Coord. Chem. Rev. 336, 78–95 (2017)

    CAS  Article  Google Scholar 

  117. D.-M. Feng, Y.-P. Zhu, P. Chen, T.-Y. Ma, Recent advances in transition-metal-mediated electrocatalytic CO2 reduction: From homogeneous to heterogeneous systems. Catalysts 7, 373 (2017)

    Article  CAS  Google Scholar 

  118. M. Zhu, J. Chen, R. Guo, J. Xu, X. Fang, Y.-F. Han, Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B 251, 112–118 (2019)

    CAS  Article  Google Scholar 

  119. S. Meshitsuka, M. Ichikawa, K. Tamaru, Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. J. Chem. Soc. Chem. Commun. 158–159 (1974)

  120. Z. Jiang, Y. Wang, X. Zhang, H. Zheng, X. Wang, Y. Liang, Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Res. 12, 2330–2334 (2019)

    CAS  Article  Google Scholar 

  121. N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang, F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D.J. Miller, J. Lu, S.-T. Lee, Y. Li, Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem. 3, 652–664 (2017)

    CAS  Article  Google Scholar 

  122. X. Wu, J.W. Sun, P.F. Liu, J.Y. Zhao, Y. Liu, L. Guo, S. Dai, H.G. Yang, H. Zhao, Molecularly dispersed cobalt phthalocyanine mediates selective and durable CO2 reduction in a membrane flow cell. Adv. Func. Mater. 32, 2107301 (2022)

    CAS  Article  Google Scholar 

  123. H. Li, Y. Pan, Z. Wang, Y. Yu, J. Xiong, H. Du, J. Lai, L. Wang, S. Feng, Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density. Nano Res. 15, 3056–3064 (2022)

    CAS  Article  Google Scholar 

  124. T.V. Magdesieva, T. Yamamoto, D.A. Tryk, A. Fujishima, Electrochemical reduction of CO2 with transition metal phthalocyanine and porphyrin complexes supported on activated carbon fibers. J. Electrochem. Soc. 149, D89 (2002)

    CAS  Article  Google Scholar 

  125. S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C.P. Berlinguette, Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019)

    CAS  PubMed  Article  Google Scholar 

  126. T.V. Magdesieva, T. Yamamoto, D.A. Tryk, A. Fujishima, Electrochemical reduction of CO2 with transition metal phthalocyanine and porphyrin complexes supported on activated carbon fibers. J. Electrochem. Soc. 149, (2002)

  127. J.-J. Ma, H.-L. Zhu, Y.-Q. Zheng, M. Shui, An insight into anchoring of cobalt phthalocyanines onto carbon: Efficiency of the CO2 reduction reaction. ACS Applied Energy Materials 4, 1442–1448 (2021)

    CAS  Article  Google Scholar 

  128. T. Abe, T. Yoshida, S. Tokita, F. Taguchi, H. Imaya, M. Kaneko, Factors affecting selective electrocatalytic CO2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode. J. Electroanal. Chem. 412, 125–132 (1996)

    Article  Google Scholar 

  129. T. Abe, H. Imaya, T. Yoshida, S. Tokita, D. Schlettwein, D. Wöhrle, M. Kaneko, Electrochemical CO2 reduction catalysed by cobalt octacyanophthalocyanine and its mechanism. J. Porphyrins Phthalocyanines 1, 315–321 (1997)

    CAS  Article  Google Scholar 

  130. H. Gu, L. Zhong, G. Shi, J. Li, K. Yu, J. Li, S. Zhang, C. Zhu, S. Chen, C. Yang, Y. Kong, C. Chen, S. Li, J. Zhang, L. Zhang, Graphdiyne/graphene heterostructure: A universal 2D scaffold anchoring monodispersed transition-metal phthalocyanines for selective and durable CO2 electroreduction. J. Am. Chem. Soc. 143, 8679–8688 (2021)

    CAS  PubMed  Article  Google Scholar 

  131. F. Liang, J. Zhang, Z. Hu, C. Ma, W. Ni, Y. Zhang, S. Zhang, Intrinsic defect-rich graphene coupled cobalt phthalocyanine for robust electrochemical reduction of carbon dioxide. ACS Appl. Mater Interfaces. 13, 25523–25532 (2021)

    CAS  PubMed  Article  Google Scholar 

  132. P. Tian, B. Zhang, J. Chen, J. Zhang, L. Huang, R. Ye, B. Bao, M. Zhu, Curvature-induced electronic tuning of molecular catalysts for CO2 reduction. Cat. Sci. Technol. 11, 2491–2496 (2021)

    CAS  Google Scholar 

  133. D. Masheder, K.P.J. Williams, Raman spectro‐electrochemistry. II. In situ Raman spectroscopic studies of the electrochemical reduction of CO2 at cobalt (II) phthalocyanine‐impregnated PTFE‐bonded carbon gas diffusion electrodes. J Raman Spectros. 18, 391–398 (1987)

  134. E.R. Savinova, S.A. Yashnik, E.N. Savinov, V.N. Parmon, Gas-phase electrocatalytic reduction of CO2 to CO on carbon gas-diffusion electrode promoted by cobalt phthalocyanine. React. Kinet. Catal. Lett. 46, 249–254 (1992)

    CAS  Article  Google Scholar 

  135. Q. Wan, Q. He, Y. Zhang, L. Zhang, J. Li, J. Hou, X. Zhuang, C. Ke, J. Zhang, Boosting the faradaic efficiency for carbon dioxide to monoxide on a phthalocyanine cobalt based gas diffusion electrode to higher than 99% via microstructure regulation of catalyst layer. Electrochim. Acta 392, 139023 (2021)

    CAS  Article  Google Scholar 

  136. S. Aoi, K. Mase, K. Ohkubo, S. Fukuzumi, Selective electrochemical reduction of CO2 to CO with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes in water. Chem. Commun. 51, 10226–10228 (2015)

    CAS  Article  Google Scholar 

  137. N. Morlanés, K. Takanabe, V. Rodionov, Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 6, 3092–3095 (2016)

    Article  CAS  Google Scholar 

  138. A. De Riccardis, M. Lee, R.V. Kazantsev, A.J. Garza, G. Zeng, D.M. Larson, E.L. Clark, P. Lobaccaro, P.W.W. Burroughs, E. Bloise, J.W. Ager, A.T. Bell, M. Head-Gordon, G. Mele, F.M. Toma, Heterogenized pyridine-substituted cobalt(II) phthalocyanine yields reduction of CO2 by tuning the electron affinity of the Co center. ACS Appl. Mater. Interfaces. 12, 5251–5258 (2020)

    PubMed  Article  CAS  Google Scholar 

  139. J. Luangchaiyaporn, D. Wielend, D. Solonenko, H. Seelajaroen, J. Gasiorowski, M. Monecke, G. Salvan, D.R.T. Zahn, N.S. Sariciftci, P. Thamyongkit, High-performance CoII-phthalocyanine-based polymer for practical heterogeneous electrochemical reduction of carbon dioxide. Electrochim. Acta. 367, (2021)

  140. J. Choi, P. Wagner, S. Gambhir, R. Jalili, D.R. MacFarlane, G.G. Wallace, D.L. Officer, Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 4, 666–672 (2019)

    CAS  Article  Google Scholar 

  141. X. Lu, Z. Jiang, X. Yuan, Y. Wu, R. Malpass-Evans, Y. Zhong, Y. Liang, N.B. McKeown, H. Wang, A bio-inspired O2-tolerant catalytic CO2 reduction electrode. Science Bulletin 64, 1890–1895 (2019)

    CAS  Article  Google Scholar 

  142. M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulie, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Isci, C.P. Berlinguette, M. Robert, CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. H. Tian, K. Wang, Z. Shui, M. Ali Raza, H. Xiao, M. Que, L. Zhu, X. Chen, Enhanced CO2 electroreduction on Co active site of cobalt phthalocyanine by electronic effect. Mater. Letters 310, 131482 (2022)

  144. Z. Yang, X. Zhang, C. Long, S. Yan, Y. Shi, J. Han, J. Zhang, P. An, L. Chang, Z. Tang, Covalently anchoring cobalt phthalocyanine on zeolitic imidazolate frameworks for efficient carbon dioxide electroreduction. CrystEngComm 22, 1619–1624 (2020)

    CAS  Article  Google Scholar 

  145. B. Han, X. Ding, B. Yu, H. Wu, W. Zhou, W. Liu, C. Wei, B. Chen, D. Qi, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, Two-dimensional covalent organic frameworks with cobalt(ii)-phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 143, 7104–7113 (2021)

    CAS  PubMed  Article  Google Scholar 

  146. A.S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H.S. Oh, P. Strasser, Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons, Angew. Chem. Int. Ed. Engl. 54, 10758–10762 (2015)

  147. W. Ju, A. Bagger, G.P. Hao, A.S. Varela, I. Sinev, V. Bon, B. Roldan Cuenya, S. Kaskel, J. Rossmeisl, P. Strasser, Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 1–9 (2017) 

  148. L. Lin, T. Liu, J. Xiao, H. Li, P. Wei, D. Gao, B. Nan, R. Si, G. Wang, X. Bao, Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst. Angew. Chem. Int. Ed. Engl. 59, 22408–22413 (2020)

    CAS  PubMed  Article  Google Scholar 

  149. L. Lin, H. Li, C. Yan, H. Li, R. Si, M. Li, J. Xiao, G. Wang, X. Bao, Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31, 1903470 (2019)

    CAS  Article  Google Scholar 

  150. S. Gong, W. Wang, X. Xiao, J. Liu, C. Wu, X. Lv, Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion. Nano Energy 84, 105904 (2021)

    CAS  Article  Google Scholar 

  151. J. Ma, H. Zhu, Y. Zheng, Highly dispersed cobalt phthalocyanine on nitrogen-doped carbon towards electrocatalytic reduction of CO2 to CO. Ionics 27, 2583–2590 (2021)

    CAS  Article  Google Scholar 

  152. X. Tan, C. Yu, X. Song, C. Zhao, S. Cui, H. Xu, J. Chang, W. Guo, Z. Wang, Y. Xie, J. Qiu, Toward an understanding of the enhanced CO2 electroreduction in NaCl electrolyte over copc molecule-implanted graphitic carbon nitride catalyst. Adv. Energy Mater. 11, 2100075 (2021)

    CAS  Article  Google Scholar 

  153. H.-L. Zhu, Y.-Q. Zheng, M. Shui, Synergistic interaction of nitrogen-doped carbon nanorod array anchored with cobalt phthalocyanine for electrochemical reduction of CO2. ACS Applied Energy Materials 3, 3893–3901 (2020)

    CAS  Article  Google Scholar 

  154. M. Li, C. Yan, R. Ramachandran, Y. Lan, H. Dai, H. Shan, X. Meng, D. Cui, F. Wang, Z.-X. Xu, Non-peripheral octamethyl-substituted cobalt phthalocyanine nanorods supported on N-doped reduced graphene oxide achieve efficient electrocatalytic CO2 reduction to CO. Chem. Eng. J. 430, 133050 (2022)

    CAS  Article  Google Scholar 

  155. T.T. Li, Y. Mei, H. Li, J. Qian, M. Wu, Y.Q. Zheng, Highly selective and active electrochemical reduction of CO2 to CO on a polymeric Co(II) phthalocyanine@graphitic carbon nitride nanosheet-carbon nanotube composite. Inorg. Chem. 59, 14184–14192 (2020)

    CAS  PubMed  Article  Google Scholar 

  156. J. Chen, J. Li, W. Liu, X. Ma, J. Xu, M. Zhu, Y.-F. Han, Facile synthesis of polymerized cobalt phthalocyanines for highly efficient CO2 reduction. Green Chem. 21, 6056–6061 (2019)

    CAS  Article  Google Scholar 

  157. C.M. Lieber, N.S. Lewis, Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine. J. Am. Chem. Soc. 106, 5033–5034 (1984)

    CAS  Article  Google Scholar 

  158. J. Chen, M. Zhu, J. Li, J. Xu, Y.-F. Han, Structure–activity relationship of the polymerized cobalt phthalocyanines for electrocatalytic carbon dioxide reduction. The J. Phys. Chem. C 124, 16501–16507 (2020)

    CAS  Article  Google Scholar 

  159. H. Wu, M. Zeng, X. Zhu, C. Tian, B. Mei, Y. Song, X.-L. Du, Z. Jiang, L. He, C. Xia, S. Dai, Defect engineering in polymeric cobalt phthalocyanine networks for enhanced electrochemical CO2 reduction. ChemElectroChem 5, 2717–2721 (2018)

    CAS  Article  Google Scholar 

  160. Z. Zhang, J. Xiao, X.J. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S. Wang, X. Meng, Y. Wang, Z.Q. Tian, D. Deng, Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. Engl. 57, 16339–16342 (2018)

    CAS  PubMed  Article  Google Scholar 

  161. S. Lin, C.S. Diercks, Y.B. Zhang, N. Kornienko, E.M. Nichols, Y. Zhao, C.J. Chang, Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015)

    CAS  PubMed  Article  Google Scholar 

  162. N. Kornienko, Y. Zhao, C.S. Kley, C. Zhu, D. Kim, S. Lin, C.J. Chang, O.M. Yaghi, P. Yang, Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015)

    CAS  PubMed  Article  Google Scholar 

  163. Y. Liu, C.C. McCrory, Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 10, 1–10 (2019)

    Article  Google Scholar 

  164. I.M. Nielsen, K. Leung, Cobalt−porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 1. A density functional study of intermediates. J. Phys. Chem. A 114, 10166–10173 (2010)

  165. J. Shen, M.J. Kolb, A.J. Gottle, M.T. Koper, DFT study on the mechanism of the electrochemical reduction of CO2 catalyzed by cobalt porphyrins. J. Phys. Chem. C 120, 15714–15721 (2016)

    CAS  Article  Google Scholar 

  166. A.J. Göttle, M.T. Koper, Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 81, 458–465 (2017)

Download references

Acknowledgements

This work was supported by the Shandong Provincial Rizhao Eco-environment Monitoring Center, Hunan University of Technology, and Rizhao Ecological Environmental Protection Service Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Feng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Sun, Y., Gu, X. et al. Advances of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to CO: a Mini Review. Electrocatalysis 13, 675–690 (2022). https://doi.org/10.1007/s12678-022-00766-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00766-y

Keywords

  • Cobalt phthalocyanine
  • Electrocatalysis
  • Carbon dioxide
  • Carbon monoxide
  • Reduction