Skip to main content

Electrochemical Dissolution Characteristics and Electrochemical Micromachining of Ti6Al4V Alloy Fabricated by Direct Metal Laser Sintering Method

Abstract

Owing to exceptional mechanical properties of titanium alloys, mechanical processing has been a challenge. Additive manufacturing of titanium alloys to produce various artefacts via direct metal laser sintering (DMLS) enables a wide range of mechanical properties via controlling the process parameters. In this study, Ti6Al4V alloys are fabricated using DMLS at different laser powers, and their electrochemical dissolution behaviour is investigated. The laser sintered Ti6Al4V alloys were primarily found to consist of martensite α´ phase due to the rapid cooling after the sintering. Electrochemical impedance spectroscopy (EIS) shows that the DMLSed fabricated Ti6Al4V is composed of a duplex oxide barrier structure, consisting of the outer porous passive layer and inner compact passive layer. Electrochemical dissolution characterization based on the potentiodynamic polarization results revealed that the lowest dissolution potential is shown by the Ti6Al4V alloy prepared at higher laser power, which indicates the ease of dissolution compared with other samples prepared at lower laser powers. A prior-β grain size was found to be increased in the alloys fabricated with increasing laser power. The coarsening of the prior-β grain fabricated at higher laser power promotes the anodic dissolution due to the higher density of martensites, thereby increasing the localized corrosion attack. The average material removal rate increases for the samples fabricated at higher laser powers. The electrochemical micromachining studies have shown that the samples prepared using a high laser power response yield an improved surface finish.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. St. John, M. Qian, Grain structure control during metal 3D printing by high-intensity ultrasound. Nat. Commun. 11, 1–9 (2020). https://doi.org/10.1038/s41467-019-13874-z

    CAS  Article  Google Scholar 

  2. B. Vrancken, L. Thijs, J.P. Kruth, J. Van Humbeeck, Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J. Alloys Compd. 541, 177–185 (2012). https://doi.org/10.1016/j.jallcom.2012.07.022

    CAS  Article  Google Scholar 

  3. J. Fojt, M. Fousova, E. Jablonska, L. Joska, V. Hybasek, E. Pruchova, D. Vojtech, T. Ruml, Corrosion behaviour and cell interaction of Ti-6Al-4V alloy prepared by two techniques of 3D printing. Mater. Sci. Eng. C 93, 911–920 (2018). https://doi.org/10.1016/j.msec.2018.08.066

    CAS  Article  Google Scholar 

  4. P. Xiu, Z. Jia, J. Lv, C. Yin, Y. Cheng, K. Zhang, C. Song, H. Leng, Y. Zheng, H. Cai, Z. Liu, Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl. Mater. Interfaces 8, 17964–17975 (2016). https://doi.org/10.1021/acsami.6b05893

    CAS  Article  PubMed  Google Scholar 

  5. D. Mah, M.H. Pelletier, V. Lovric, W.R. Walsh, Corrosion of 3D-printed orthopaedic implant materials. Ann. Biomed. Eng. 47, 162–173 (2019). https://doi.org/10.1007/s10439-018-02111-1

    Article  PubMed  Google Scholar 

  6. T.P. Chaturvedi, An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J. Dent. Res. 20, 91–98 (2009). https://doi.org/10.4103/0970-9290.49068

    CAS  Article  PubMed  Google Scholar 

  7. S. Liu, Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: a review. Mater. Des. 164, 1–23 (2019). https://doi.org/10.1016/j.matdes.2018.107552

    CAS  Article  Google Scholar 

  8. P. Ahangar, M.E. Cooke, M.H. Weber, D.H. Rosenzweig, Current biomedical applications of 3D printing and additive manufacturing. Appl. Sci. 9, 1–23 (2019). https://doi.org/10.3390/app9081713

    CAS  Article  Google Scholar 

  9. S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N. Adib Kadri, N.A.A. Osman, A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16, 1–20 (2015). https://doi.org/10.1088/1468-6996/16/3/033502

  10. M.G. Moletsane, P. Krakhmalev, N. Kazantseva, A. du Plessis, I. Yadroitsava, I. Yadroitsev, Tensile properties and microstructure of direct metal laser-sintered Ti6Al4V (ELI) alloy. South African J. Ind. Eng. 27, 110–121 (2016). https://doi.org/10.7166/27-3-1667

    Article  Google Scholar 

  11. S. Dhiman, S.S. Sidhu, P.S. Bains, M. Bahraminasab, Mechanobiological assessment of Ti-6Al-4V fabricated via selective laser melting technique: a review. Rapid Prototyp. J. 25, 1266–1284 (2019). https://doi.org/10.1108/RPJ-03-2019-0057

    Article  Google Scholar 

  12. C.N. Kelly, N.T. Evans, C.W. Irvin, S.C. Chapman, K. Gall, D.L. Safranski, The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Mater. Sci. Eng. C 98, 726–736 (2019). https://doi.org/10.1016/j.msec.2019.01.024

    CAS  Article  Google Scholar 

  13. R. Sharma, A.K. Singh, A. Amit, S. Pati, P.S. De, Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5 wt.% sodium chloride solution. Trans. Nonferrous Met. Soc. China 29, 1383–1392 (2019). https://doi.org/10.1016/S1003-6326(19)65045-4

  14. J. Fojt, V. Hybášek, Z. Kačenka, E. Průchová, Influence of surface finishing on corrosion behaviour of 3d printed tialv alloy. Metals (Basel). 10, 1–11 (2020). https://doi.org/10.3390/met10111547

    CAS  Article  Google Scholar 

  15. H. Arslan, H. Çelikkan, N. Örnek, O. Ozan, A.E. Ersoy, M.L. Aksu, Galvanic corrosion of titanium-based dental implant materials. J. Appl. Electrochem. 38, 853–859 (2008). https://doi.org/10.1007/s10800-008-9523-5

    CAS  Article  Google Scholar 

  16. N. Eliaz, Corrosion of metallic biomaterials: a review. Materials (Basel). 12, 1–91 (2019). https://doi.org/10.3390/ma12030407

    CAS  Article  Google Scholar 

  17. S. Pauly, L. Löber, R. Petters, M. Stoica, S. Scudino, U. Kühn, J. Eckert, Processing metallic glasses by selective laser melting. Mater. Today 16, 37–41 (2013). https://doi.org/10.1016/j.mattod.2013.01.018

    CAS  Article  Google Scholar 

  18. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater. Des. 108, 308–318 (2016). https://doi.org/10.1016/j.matdes.2016.06.117

    CAS  Article  Google Scholar 

  19. A. Gupta, M. Hussain, S. Misra, A.K. Das, A. Mandal, Processing and characterization of laser sintered hybrid B4C/cBN reinforced Ti-based metal matrix composite. Opt. Lasers Eng. 105, 159–172 (2018). https://doi.org/10.1016/j.optlaseng.2018.01.015

    Article  Google Scholar 

  20. J. Li, X. Lin, M. Zheng, J. Wang, P. Guo, T. Qin, M. Zhu, W. Huang, H. Yang, Distinction in anodic dissolution behavior on different planes of laser solid formed Ti-6Al-4V alloy. Electrochim. Acta 283, 1482–1489 (2018). https://doi.org/10.1016/j.electacta.2018.07.112

    CAS  Article  Google Scholar 

  21. H.M. Hamza, K.M. Deen, W. Haider, Microstructural examination and corrosion behavior of selective laser melted and conventionally manufactured Ti6Al4V for dental applications. Mater. Sci. Eng. C 113, 1–12 (2020). https://doi.org/10.1016/j.msec.2020.110980

    CAS  Article  Google Scholar 

  22. Y. Xiao, N. Dai, Y. Chen, J. Zhang, S.W. Choi, On the microstructure and corrosion behaviors of selective laser melted CP-Ti and Ti-6Al-4V alloy in Hank’s artificial body fluid. Mater. Res. Express 6, 1–12 (2019). https://doi.org/10.1088/2053-1591/ab54d5

    CAS  Article  Google Scholar 

  23. J. Li, X. Lin, P. Guo, W. Huang, Effect of layer band and heterogeneity of microstructure on electrochemical dissolution of laser solid formed Ti-6Al-4V alloy. J. Laser Appl. 31, 1–10 (2019). https://doi.org/10.2351/1.5096143

    CAS  Article  Google Scholar 

  24. M. Tak, V. Reddy, A. Mishra, R.G. Mote, Investigation of pulsed electrochemical micro-drilling on titanium alloy in the presence of complexing agent in electrolyte. J. Micromanufacturing 1, 1–12 (2018). https://doi.org/10.1177/2516598418784682

    Article  Google Scholar 

  25. S.S. Anasane, B. Bhattacharyya, Experimental investigation on suitability of electrolytes for electrochemical micromachining of titanium. Int. J. Adv. Manuf. Technol. 86, 2147–2160 (2016). https://doi.org/10.1007/s00170-015-8309-2

    Article  Google Scholar 

  26. M. Tak, R. Mote, Anodic dissolution behaviour of passive layer during hybrid electrochemical micromachining of Ti6Al4V in NaNO3 solution. J. Micro Nano-Manufacturing 9, 041001–041012 (2021). https://doi.org/10.1115/1.4052327

    CAS  Article  Google Scholar 

  27. D. Il Seo, J.B. Lee, Effects of competitive anion adsorption (Br− or Cl−) and semiconducting properties of the passive films on the corrosion behavior of the additively manufactured Ti–6Al–4V alloys. Corros. Sci. 173, 1–8 (2020). https://doi.org/10.1016/j.corsci.2020.108789

  28. R. Ittah, I. Malka, I. Bar, D. Itzhak, Pitting corrosion evaluation of titanium in NaBr solutions by electrochemical methods and Raman spectroscopy. Int. J. Electrochem. Sci. 10, 1326–1342 (2015)

    Google Scholar 

  29. M. Tak, H. Tomar, R.G. Mote, Synthesis of titanium nanotubes (TNT) and its influence on electrochemical micromachining of titanium. Procedia CIRP 95, 803–808 (2020). https://doi.org/10.1016/j.procir.2020.01.140

    Article  Google Scholar 

  30. M. Tak, S. Singh, R.G. Mote, Effect of of microstructure microstructure on on electrochemical electrochemical dissolution dissolution characteristics characteristics of of titanium alloys in electrochemical micromachining titanium alloy. Procedia Manuf. 34, 362–368 (2019). https://doi.org/10.1016/j.promfg.2019.06.178

    Article  Google Scholar 

  31. C.M. Cepeda-Jiménez, F. Potenza, E. Magalini, V. Luchin, A. Molinari, M.T. Pérez-Prado, Effect of energy density on the microstructure and texture evolution of Ti-6Al-4V manufactured by laser powder bed fusion. Mater. Charact. 163, 1–9 (2020). https://doi.org/10.1016/j.matchar.2020.110238

    CAS  Article  Google Scholar 

  32. F.R. Kaschel, M. Celikin, D.P. Dowling, Effects of laser power on geometry, microstructure and mechanical properties of printed Ti-6Al-4V parts. J. Mater. Process. Technol. 278, 1–12 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116539

    CAS  Article  Google Scholar 

  33. M.V. Pantawane, Y.H. Ho, S.S. Joshi, N.B. Dahotre, Computational assessment of thermokinetics and associated microstructural evolution in laser powder bed fusion manufacturing of Ti6Al4V alloy. Sci. Rep. 10, 1–14 (2020). https://doi.org/10.1038/s41598-020-63281-4

    CAS  Article  Google Scholar 

  34. I. Yadroitsev, I. Smurov, Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Phys. Procedia 5, 551–560 (2010). https://doi.org/10.1016/j.phpro.2010.08.083

    Article  Google Scholar 

  35. H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, B. Stucker, Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545–554 (2015). https://doi.org/10.1016/j.matdes.2015.07.147

  36. X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, W. Voice, Microstructures of laser-deposited Ti–6Al–4V. Mater. Des. 25, 137–144 (2004). https://doi.org/10.1016/j.matdes.2003.09.009

    CAS  Article  Google Scholar 

  37. J. Han, J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density. Rapid Prototyp. J. 23, 217–226 (2017). https://doi.org/10.1108/RPJ-12-2015-0193

    Article  Google Scholar 

  38. R.M. Mahamood, E.T. Akinlabi, M. Shukla, S. Pityana, Characterizing the effect of laser power density on microstructure, microhardness, and surface finish of laser deposited titanium alloy. J. Manuf. Sci. Eng. Trans. ASME 135, 1–4 (2013). https://doi.org/10.1115/1.4025737

    Article  Google Scholar 

  39. H. Gong, H. Gu, K. Zeng, J. Dilip, D. Pal, B. Stucker, Angew. Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder. Chemie Int. Ed. 6, 256–267 (1967)

  40. S.L. Sing, W.Y. Yeong, F.E. Wiria, Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J. Alloys Compd. 660, 461–470 (2016). https://doi.org/10.1016/j.jallcom.2015.11.141

    CAS  Article  Google Scholar 

  41. S.M. Bhola, S. Kundu, B. Mishra, S. Chatterjee, Electrochemical study of diffusion bonded joints between microduplex stainless steel and Ti6Al4V alloy. J. Mater. Sci. Technol. 30, 163–171 (2014). https://doi.org/10.4028/www.scientific.net/msf.783-786.2250

    CAS  Article  Google Scholar 

  42. J. Sun, Y. Yang, D. Wang, Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Opt. Laser Technol. 49, 118–124 (2013). https://doi.org/10.1016/j.optlastec.2012.12.002

    CAS  Article  Google Scholar 

  43. J. Sun, X. Zhu, L. Qiu, F. Wang, Y. Yang, L. Guo, The microstructure transformation of selective laser melted Ti-6Al-4V alloy. Mater. Today Commun. 19, 277–285 (2019). https://doi.org/10.1016/j.mtcomm.2019.02.006

    CAS  Article  Google Scholar 

  44. J. Yang, H. Yang, H. Yu, Z. Wang, X. Zeng, Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution. Metall. Mater. Trans. A 48, 3583–3593 (2017). https://doi.org/10.1007/s11661-017-4087-9

    CAS  Article  Google Scholar 

  45. N. Dai, L.C. Zhang, J. Zhang, Q. Chen, M. Wu, Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corros. Sci. 102, 484–489 (2016). https://doi.org/10.1016/j.corsci.2015.10.041

    CAS  Article  Google Scholar 

  46. M.V. Diamanti, F. Bolzoni, M. Ormellese, E.A. Pérez-Rosales, M.P. Pedeferri, Characterisation of titanium oxide films by potentiodynamic polarisation and electrochemical impedance spectroscopy. Corros. Eng. Sci. Technol. 45, 428–434 (2010). https://doi.org/10.1179/147842208X373191

    CAS  Article  Google Scholar 

  47. J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, E. Mahé, Structure and composition of passive titanium oxide films. Mater. Sci. Eng. B 47, 235–243 (1997). https://doi.org/10.1016/S0921-5107(97)00043-3

    Article  Google Scholar 

  48. D. Il Seo, J.B. Lee, Localized corrosion resistance on additively manufactured ti alloys by means of electrochemical critical localized corrosion potential in biomedical solution environments. Materials (Basel). 14, 1–25 (2021). https://doi.org/10.3390/ma14237481

Download references

Acknowledgements

The authors are also thankful to Biomedical Engineering and Technology Innovation Centre (BETIC), supported by RG S&T Commission, Mumbai for the DMLS facility.

Funding

This study is financially supported by Science and Engineering Research Board (SERB), New Delhi, via Grant No.: CRG/2020/006117 and the Portescap India Pvt. Ltd., CSR fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh G. Mote.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tak, M., Gaur, B., Ravi, B. et al. Electrochemical Dissolution Characteristics and Electrochemical Micromachining of Ti6Al4V Alloy Fabricated by Direct Metal Laser Sintering Method. Electrocatalysis 13, 853–872 (2022). https://doi.org/10.1007/s12678-022-00761-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00761-3

Keywords

  • Electrochemical
  • Dissolution
  • DLMS
  • Ti6Al4V alloy
  • Oxide film