Skip to main content

Correlation of the Electrochemical Parameters of Carbon Fibre Treatment in Sulphuric Acid by Cyclic Voltammetry with the Created Functional Groups and Their Formation Mechanism

Abstract

The unknown oxidative surface treatment of commercial carbon fibres, which raises difficulties in their application and research, the trend today and in the future to develop graphite-like carbonaceous materials for unconventional applications (e.g. to produce graphene), and the necessity to recycle carbon fibre products, all are approached with appropriate methodology. The latter is based on the further treatment of commercial carbon fibres by cyclic voltammetry under various electrochemical conditions, including the entire range of electrolyte concentrations from dilute to very concentrated sulphuric acid, in the potential range of -3 V to + 3 V and backwards. Characterisation methods such as XPS, SEM/EDS, and the Boehm titration technique are used to determine the electron acceptor/donor groups created on the carbon fibres. Three types of treated carbon fibres in H2SO4 are distinguished, (1) 1%, 5%, and 30% w/w, (2) 60% w/w, and (3) 96% w/w H2SO4, whereas for the last both cases, the carbon fibres after the 3rd cycle of treatment are overoxidised, suggesting the beginning of a degraded structure. For each concentration of H2SO4 and for each cycle of treatment: C–OH, C-O-C ≫ HBS (hydrogen bridge structure) ≫ COOH ≫ C = O. The mechanisms and formation reactions of functional groups created on carbon fibres during cyclic voltammetry treatment are also discussed in depth. Depending on the numerous application directions of carbon fibres, representative materials, such as carbon fibres treated with defined electrochemical conditions and having a preferred structure, can be chosen.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. S.-J. Park, Surface treatment and sizing of carbon fibers, in: Carbon Fibers, Springer Singapore, Singapore. 105–137 (2018)

  2. T.K. Das, P. Ghosh, N.C. Das, Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv. Compos. Hybrid Mater. 2, 214–233 (2019). https://doi.org/10.1007/s42114-018-0072-z

    CAS  Article  Google Scholar 

  3. D.-K. Kim, K.-H. An, Y.H. Bang, L.-K. Kwac, S.-Y. Oh, B.-J. Kim, Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method. Carbon Lett. 19, 32–39 (2016). https://doi.org/10.5714/cl.2016.19.032

    Article  Google Scholar 

  4. J. Xu, W. Johannisson, M. Johansen, F. Liu, D. Zenkert, G. Lindbergh, L.E. Asp, Characterization of the adhesive properties between structural battery electrolytes and carbon fibers. Compos. Sci. Technol. 188, 107962 (2020). https://doi.org/10.1016/j.compscitech.2019.107962

    CAS  Article  Google Scholar 

  5. V. Thakare, N. Tripathi, V. Singh, M. Sathe, B. Singh, Activated carbon fabric: an adsorbent material for chemical protective clothing, Def. Sci. J. 68, 83–90 (2017). https://doi.org/10.14429/dsj.68.11734.

  6. W. Zheng, J. Hu, Z. Han, Z. Wang, Z. Zheng, J. Langer, J. Economy, Synthesis of porous carbon fibers with strong anion exchange functional groups. Chem. Commun. Camb. 51, 9853–9856 (2015). https://doi.org/10.1039/c5cc02695d

    CAS  Article  PubMed  Google Scholar 

  7. E. Fitzer, R. Weiss, Effect of surface treatment and sizing of c-fibres on the mechanical properties of cfr thermosetting and thermoplastic polymers. Carbon 25, 455–467 (1987). https://doi.org/10.1016/0008-6223(87)90186-2

    CAS  Article  Google Scholar 

  8. X. Qian, Y.G. Zhang, X.F. Wang, Y.J. Heng, J.H. Zhi, Effect of carbon fiber surface functionality on the moisture absorption behavior of carbon fiber/epoxy resin composites. Surf. Interface Anal. 48, 1271–1277 (2016). https://doi.org/10.1002/sia.6031

    CAS  Article  Google Scholar 

  9. M. Sharma, S. Gao, E. Mäder, H. Sharma, L.Y. Wei, J. Bijwe, Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 102, 35–50 (2014). https://doi.org/10.1016/j.compscitech.2014.07.005

    CAS  Article  Google Scholar 

  10. N. Dilsiz, Plasma surface modification of carbon fibers: a review. J. Adhes. Sci. Technol. 14, 975–987 (2000). https://doi.org/10.1163/156856100743013

    CAS  Article  Google Scholar 

  11. H. Cao, Y. Huang, Z. Zhang, J. Sun, Uniform modification of carbon fibers surface in 3-D fabrics using intermittent electrochemical treatment. Compos. Sci. Technol. 65, 1655–1662 (2005). https://doi.org/10.1016/j.compscitech.2005.02.018

  12. E. Moaseri, M. Maghrebi, M. Baniadam, Improvements in mechanical properties of carbon fiber-reinforced epoxy composites: a microwave-assisted approach in functionalization of carbon fiber via diamines. Mater. Des. 55, 644–652 (2014). https://doi.org/10.1016/j.matdes.2013.10.040

    CAS  Article  Google Scholar 

  13. H. Yuan, C. Wang, S. Zhang, X. Lin, Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite. Appl. Surf. Sci. 259, 288–293 (2012). https://doi.org/10.1016/j.apsusc.2012.07.034

    CAS  Article  Google Scholar 

  14. K. Yu, M. Wang, J. Wu, K. Qian, J. Sun, X. Lu, Modification of the interfacial interaction between carbon fiber and epoxy with carbon hybrid materials. Nanomater. Basel. 6, (2016). https://doi.org/10.3390/nano6050089.

  15. M.S. Vishkaei, M.A.M. Salleh, R. Yunus, D.R.A. Biak, F. Danafar, F. Mirjalili, Effect of short carbon fiber surface treatment on composite properties. J. Compos. Mater. 45, 1885–1891 (2011). https://doi.org/10.1177/0021998310389090

    CAS  Article  Google Scholar 

  16. A. Bismarck, M.E. Kumru, J. Springer, J. Simitzis, Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems. J Appl Surf Sci. 143, 45–55 (1999). https://doi.org/10.1016/S0169-4332(98)00929-5

    CAS  Article  Google Scholar 

  17. J. Liu, Y. Tian, Y. Chen, J. Liang, Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution. Appl. Surf. Sci. 256, 6199–6204 (2010). https://doi.org/10.1016/j.apsusc.2010.03.14110.1016/j.apsusc.2010.03.141

    CAS  Article  Google Scholar 

  18. R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, Effect of electrochemical treatments on the surface chemistry of activated carbon. Carbon 47, 1018–1027 (2009). https://doi.org/10.1016/j.carbon.2008.12.022

    CAS  Article  Google Scholar 

  19. A.E. Sorokin, G.N. Petrova, I.N. Donskikh, Use of chemical and electrochemical treatment methods in the liquid-phase modification of carbon fiber and fiberglass surfaces in the production of construction materials: a review. Theor. Found. Chem. Eng. 54, 1061–1067 (2020). https://doi.org/10.1134/S004057952005022X

    CAS  Article  Google Scholar 

  20. M.S. Yadav, Electrochemistry (Anmol Publications, New Delhi, 1990)

    Google Scholar 

  21. A. Proctor, P.M.A. Sherwood, X-ray photoelectron spectroscopic studies of carbon fibre surfaces—II: The effect of electrochemical treatment. Carbon 21, 53–59 (1983). https://doi.org/10.1016/0008-6223(83)90156-2

    CAS  Article  Google Scholar 

  22. E. Fitzer, H. Jäger, N. Popovska, F. Von Sturm, Anodic oxidation of high modulus carbon fibres in sulphuric acid. J. Appl. Electrochem. 18, 178–182 (1988). https://doi.org/10.1007/BF01009259

    CAS  Article  Google Scholar 

  23. J.O. Besenhard, H.P. Fritz, The electrochemistry of black carbons. Angew. Chem. Int. Ed. Engl. 22, 950–975 (1983). https://doi.org/10.1002/anie.198309501

    Article  Google Scholar 

  24. A.D. Jannakoudakis, P.D. Jannakoudakis, E. Theodoridou, J.O. Besenhard, Electrochemical oxidation of carbon fibres in aqueous solutions and analysis of the surface oxides. J. Appl. Electrochem. 20, 619–624 (1990). https://doi.org/10.1007/BF01008872

    CAS  Article  Google Scholar 

  25. Y.-Q. Wang, H. Viswanathan, A.A. Audi, P.M.A. Sherwood, X-ray Photoelectron Spectroscopic Studies of Carbon Fiber Surfaces. 22. Comparison between surface treatment of untreated and previously surface-treated fibers, Chem. Mater. 12, 1100–1107 (2000). https://doi.org/10.1021/cm990734e

  26. E. Senokos, M. Rana, C. Santos, R. Marcilla, J.J. Vilatela, Controlled electrochemical functionalization of CNT fibers: Structure-chemistry relations and application in current collector-free all-solid supercapacitors. Carbon 142, 599–609 (2019). https://doi.org/10.1016/j.carbon.2018.10.082

    CAS  Article  Google Scholar 

  27. M. Bauer, S. Beratz, K. Ruhland, S. Horn, J. Moosburger-Will, Anodic oxidation of carbon fibers in alkaline and acidic electrolyte: quantification of surface functional groups by gas-phase derivatization. Appl. Surf. Sci. 506, 144947 (2020). https://doi.org/10.1016/j.apsusc.2019.144947

    CAS  Article  Google Scholar 

  28. E. Fitzer, M. Heine, Carbon Fiber Manufacture and surface treatment, in: A.R. Bunsell (Ed.), Fiber Reinf. Compos. Mater., Elsevier Amsterdam - Oxford - New York - Tokyo. 73–148 (1988).

  29. The Japan Carbon Fiber Manufactures Association © 2002-2022 (merged into Japan Chemical Fibers Association (JCFA) on July 1, 2014), (n.d.). https://www.carbonfiber.gr.jp/english/material/manufacture.html

  30. P. Georgiou, J. Walton, J. Simitzis, Surface modification of pyrolyzed carbon fibres by cyclic voltammetry and their characterization with XPS and dye adsorption. Electrochim. Acta. 55, 1207–1216 (2010). https://doi.org/10.1016/j.electacta.2009.09.068

    CAS  Article  Google Scholar 

  31. J.C. Simitzis, P.C. Georgiou, Functional group changes of polyacrylonitrile fibres during their oxidative, carbonization and electrochemical treatment. J. Mater. Sci. 50, 4547–4564 (2015). https://doi.org/10.1007/s10853-015-9004-2

    CAS  Article  Google Scholar 

  32. Y. Kulikova, E. Farberova, N. Slyusar’, G. Il’inykh, V. Korotaev, Feasibility assessment for production of sorbents based on secondary carbon fibers. Fibre Chem. 51, (2019). https://doi.org/10.1007/s10692-019-10056-x

  33. J. Yang, K. Du, L. Hu, D. Wang, Scalable fabrication of carbon nanomaterials by electrochemical dual-electrode exfoliation of graphite in hydroxide molten salt. Ind. Eng. Chem. Res. 59, 10010–10017 (2020). https://doi.org/10.1021/acs.iecr.0c01430

    CAS  Article  Google Scholar 

  34. A. Islam, B. Mukherjee, K.K. Pandey, A.K. Keshri, Ultra-fast, chemical-free, mass production of high quality exfoliated graphene. ACS Nano 15, 1775–1784 (2021). https://doi.org/10.1021/acsnano.0c09451

    CAS  Article  PubMed  Google Scholar 

  35. S. Kapoor, A. Jha, H. Ahmad, S.S. Islam, Avenue to Large-scale production of graphene quantum dots from high-purity graphene sheets using laboratory-grade graphite electrodes. ACS Omega 5, 18831–18841 (2020). https://doi.org/10.1021/acsomega.0c01993

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. C. Casimero, C. Hegarty, R.J. McGlynn, J. Davis, Ultrasonic exfoliation of carbon fiber: electroanalytical perspectives. J. Appl. Electrochem. 50, 383–394 (2020). https://doi.org/10.1007/s10800-019-01379-y

    CAS  Article  Google Scholar 

  37. M. Toyoda, A. Shimizu, H. Iwata, M. Inagaki, Exfoliation of carbon fibers through intercalation compounds synthesized electrochemically. Carbon 39, 1697–1707 (2001). https://doi.org/10.1016/S0008-6223(00)00293-1

    CAS  Article  Google Scholar 

  38. X. Chen, C. Zhang, G.-L. Song, D. Zheng, Y. Guo, X. Huang, electrochemical activity and damage of single carbon fiber, Materials. 14, (2021). https://doi.org/10.3390/ma14071758

  39. J. Gulyás, E. Földes, A. Lázár, B. Pukánszky, Electrochemical oxidation of carbon fibres: surface chemistry and adhesion. Compos. Part Appl. Sci. Manuf. 32, 353–360 (2001). https://doi.org/10.1016/s1359-835x(00)00123-8

    Article  Google Scholar 

  40. Y. Sun, C. Yang, Y. Lu, Weak layer exfoliation and an attempt for modification in anodic oxidation of PAN-based carbon fiber. J. Mater. Sci. 55, 2372–2379 (2020). https://doi.org/10.1007/s10853-019-04181-5

    CAS  Article  Google Scholar 

  41. A.F. Holleman, continued by E. Wiberg, W.B. translated by Mary Eagleson, Aylett, revised by B. J., Inorganic Chemistry, San Diego : Academic Press ; Berlin ; New York : De Gruyter. (2001).

  42. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759–769 (1994). https://doi.org/10.1016/0008-6223(94)90031-0

    CAS  Article  Google Scholar 

  43. Z. Wang, M.D. Shirley, S.T. Meikle, R.L.D. Whitby, S.V. Mikhalovsky, The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon 47, 73–79 (2009). https://doi.org/10.1016/j.carbon.2008.09.038

    CAS  Article  Google Scholar 

  44. J. Schönherr, J.R. Buchheim, P. Scholz, P. Adelhelm, Boehm titration revisited (Part I): Practical aspects for achieving a high precision in quantifying oxygen-containing surface groups on carbon materials. C. 4, (2018). https://doi.org/10.3390/c4020021

  45. J. Schönherr, J.R. Buchheim, P. Scholz, P. Adelhelm, Boehm titration revisited (Part II): A comparison of boehm titration with other analytical techniques on the quantification of oxygen-containing surface groups for a variety of carbon materials, C — J. Carbon Res. 4, (2018). https://doi.org/10.3390/c4020022

  46. Y. Yi, G. Weinberg, M. Prenzel, M. Greiner, S. Heumann, S. Becker, R. Schlögl, Electrochemical corrosion of a glassy carbon electrode, Water. Interfaces 295, 32–40 (2017). https://doi.org/10.1016/j.cattod.2017.07.013

    CAS  Article  Google Scholar 

  47. E. Theodoridou, J.O. Besenhard, H.P. Fritz, Chemically modified carbon fibre electrodes. J. Electroanal. Chem. Interfacial Electrochem. 122, 67–71 (1981). https://doi.org/10.1016/s0022-0728(81)80141-6

    CAS  Article  Google Scholar 

  48. S. Baumann, Microelectronic Failure Analusis Desk Reference 2002 Supplement, ASM International. (2002)

  49. R.B. Fidel, D.A. Laird, M.L. Thompson, evaluation of modified boehm titration methods for use with biochars. J. Environ. Qual. 42, 1771–1778 (2013). https://doi.org/10.2134/jeq2013.07.0285

    CAS  Article  PubMed  Google Scholar 

  50. B. Sajjadi, T. Zubatiuk, D. Leszczynska, J. Leszczynski, W.Y. Chen, Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev. Chem. Eng. 35, 777–815 (2019). https://doi.org/10.1515/revce-2018-0003

    CAS  Article  Google Scholar 

  51. D. Alliata, R. Kötz, O. Haas, H. Siegenthaler, In Situ AFM Study of Interlayer Spacing during Anion Intercalation into HOPG in Aqueous Electrolyte. Langmuir 15, 8483–8489 (1999). https://doi.org/10.1021/la990402o

    CAS  Article  Google Scholar 

  52. J.G. Roberts, B.P. Moody, G.S. McCarty, L.A. Sombers, Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes. Langmuir 26, 9116–9122 (2010). https://doi.org/10.1021/la9048924

    CAS  Article  PubMed  Google Scholar 

  53. J.G. Roberts, E.C. Mitchell, L.E. Dunaway, G.S. McCarty, L.A. Sombers, Carbon-fiber nanoelectrodes for real-time discrimination of vesicle cargo in the native cellular environment. ACS Nano 14, 2917–2926 (2020). https://doi.org/10.1021/acsnano.9b07318

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannis Simitzis.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3808 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Georgiou, P., Simitzis, J. Correlation of the Electrochemical Parameters of Carbon Fibre Treatment in Sulphuric Acid by Cyclic Voltammetry with the Created Functional Groups and Their Formation Mechanism. Electrocatalysis 13, 838–852 (2022). https://doi.org/10.1007/s12678-022-00758-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00758-y

Keywords

  • Carbon fibres
  • Cyclic voltammetry
  • Electrochemical treatment
  • Mechanism
  • Functional groups