Skip to main content

Advertisement

Log in

Hyperbranched NixPy/NiCoP Arrays Based on Nickel Foam Electrode for Efficient and Stable Electrocatalytic Hydrogen Evolution

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Transition metal phosphides have high catalytic performance and stability among non-precious metal electrocatalysts, particularly exhibiting good hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance in alkaline solutions, due to the platinum-like electronic structure of transition metal phosphides. In this study, we successfully synthesized nickel phosphide and nickel cobalt phosphate hybrid on the three-dimensional nickel foam by a facile hydrothermal method. It is worth noting that the NixPy/NiCoP in 1 M KOH only needs the overpotential of 95 mV to reach the current density of 10 mA∙cm−2 for hydrogen evolution reaction (HER) and the overpotential of 231 mV at 10 mA∙cm−2 for oxygen evolution reaction (OER), which is superior to most electrocatalysts. The obtained results indicate that there is a synergistic effect between the three elements of Ni, Co, and P, facilitating the process of electrocatalysis. Meanwhile, the synthesized electrode not only has a large active surface area, but also good electrical conductivity, effectively facilitating the electrocatalytic reaction kinetics. Thus, this work provides an effective route to a low-cost, high-performance catalyst for electrocatalytic hydrogen production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Wang, Y.V. Kolen’ko, L. Liu, Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni2P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chem. Commun. 51, 6738–6741 (2015)

    Article  CAS  Google Scholar 

  2. Z. Guo, Z. Liu, Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting. Dalton Trans. 50, 1983–1989 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. X. Zhang, W. Gu, E. Wang, Wire-on-flake heterostructured ternary Co0.5Ni0.5P/CC: an efficient hydrogen evolution electrocatalyst. J. Mater. Chem. A 5, 982–987 (2017)

    Article  CAS  Google Scholar 

  4. R. Zhou, J. Zhang, Z. Chen, X. Han, C. Zhong, W. Hu, Y. Deng, Phase and composition controllable synthesis of nickel phosphide-based nanoparticles via a low-temperature process for efficient electrocatalytic hydrogen evolution. Electrochim. Acta 258, 866–875 (2017)

    Article  CAS  Google Scholar 

  5. Z. Guo, J. Wei, B. Zhang, M. Ruan, Z. Liu, Construction and photoelectrocatalytic performance of TiO2/BiVO4 heterojunction modified with cobalt phosphate. J. Alloy. Compd. 821, 153225 (2020)

    Article  CAS  Google Scholar 

  6. N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, 4998 (2017)

    Article  Google Scholar 

  8. V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017)

    Article  CAS  Google Scholar 

  9. Z. Guo, X. Wang, F. Yang, Z. Liu, Synergistic effect of Co and Fe bimetallic oxides/hydroxides composite structure as a bifunctional electrocatalyst for enhancing overall water splitting performance. J. Alloy. Compd. 895, 162614 (2022)

    Article  CAS  Google Scholar 

  10. J. Chen, J. Liu, J.Q. Xie, H. Ye, X.Z. Fu, R. Sun, C.P. Wong, Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range. Nano Energy 56, 225–233 (2019)

    Article  CAS  Google Scholar 

  11. D.Y. Chung, S.W. Jun, G. Yoon, H. Kim, J.M. Yoo, K.S. Lee, T. Kim, H. Shin, A.K. Sinha, S.G. Kwon, Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for robust hydrogen evolution reaction electrocatalyst. J. Am. Chem. Soc. 139, 6669–6674 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. S. Min, J. Qin, W. Hai, Y. Lei, J. Hou, F. Wang, Electrochemical growth of MoSx on Cu foam: a highly active and robust three-dimensional cathode for hydrogen evolution. Int. J. Hydrogen Energy 43, 4978–4986 (2018)

    Article  CAS  Google Scholar 

  13. C. Xu, J. Li, D. Sun, X. Li, Z. Su, Co/WC@NC Electrocatalysts derived from polyoxometalates (POM) for efficient hydrogen evolution. Nanotechnology 32, 375602 (2021)

    Article  CAS  Google Scholar 

  14. L. Zhao, H. Ge, G. Zhang, F. Wang, G. Li, Hierarchical Ni3S2-CoMoS on the nickel foam as an advanced electrocatalyst for overall water splitting. Electrochim. Acta 387, 138538 (2021)

    Article  CAS  Google Scholar 

  15. F. Yang, Z. Guo, B. Zhang, E. Lei, A Co3O4/CuO composite nanowire array as low-cost and efficient bifunctional electrocatalyst for water splitting. Appl. Phys. A 127, 336 (2021)

    Article  CAS  Google Scholar 

  16. B. Zhang, G. Yang, C. Li, K. Huang, J. Wu, S. Hao, J. Feng, D. Peng, Y. Huang, Phase controllable fabrication of zinc cobalt sulfide hollow polyhedra as high-performance electrocatalysts for the hydrogen evolution reaction. Nanoscale 10, 1774–1778 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao, Y. Tang, Heteronanowires of MoC–Mo 2 C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 7, 3399–3405 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Wang, J. Wang, M. Zhu, X. Bao, B. Xiao, D. Su, H. Li, W. Yong, Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: a highly efficient, low-cost catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 15753–15759 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. J. Cao, J. Zhou, Y. Zhang, Y. Wang, X. Liu, Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 10, 1752–1760 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. Z. Guo, F. Yang, B. Zhang, X. Wang, Z. Liu, In situ formed CuInS2/SnS2 hybrid on foam-like nickel as bifunctional electrode for water splitting. Electrochim. Acta 405, 139802 (2022)

    Article  CAS  Google Scholar 

  21. L. Wei, Z. Guo, X. Jia, Probing photocorrosion mechanism of CdS films and enhancing photoelectrocatalytic activity via cocatalyst. Catal. Lett. 151, 56–66 (2021)

    Article  CAS  Google Scholar 

  22. K. Kuttiyiel, K. Sasaki, W.F. Chen, D. Su, R. Adzic, Core-shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. J Mater Chem A 2, 591–594 (2014)

    Article  CAS  Google Scholar 

  23. Y. Wang, Y. Sun, F. Yan, C. Zhu, P. Gao, X. Zhang, Y.J. Chen, Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting. J Mater Chem A 6, 8479–8487 (2018)

    Article  CAS  Google Scholar 

  24. N. Xu, G. Cao, Z. Chen, Q. Kang, H. Dai, P. Wang, Cobalt nickel boride as an active electrocatalyst for water splitting. J Mater Chem A 5, 12379–12384 (2017)

    Article  CAS  Google Scholar 

  25. J. Chang, K. Li, Z. Wu, J. Ge, C. Liu, W. Xing, Sulfur-doped nickel phosphide nanoplates arrays: a monolithic electrocatalyst for efficient hydrogen evolution reactions. ACS Appl Mater Interfaces 10, 26303–26311 (2018)

    Article  CAS  PubMed  Google Scholar 

  26. G. Liu, Y. Wu, R. Yao, F. Zhao, Q. Zhao, J. Li, Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting. Green Energy Environ. 6, 496–505 (2021)

    Article  Google Scholar 

  27. R. Zhang, C. Tang, R. Kong, G. Du, A.M. Asiri, L. Chen, X. Sun, Al-Doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity. Nanoscale 9, 4793–4800 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. H. Zheng, X. Huang, H. Gao, G. Lu, A. Li, W. Dong, G. Wang, Cobalt-tuned nickel phosphide nanoparticles for highly efficient electrocatalysis. Appl. Surf. Sci. 479, 1254–1261 (2019)

    Article  CAS  Google Scholar 

  29. C. Hu, C. Lv, S. Liu, Y. Shi, J. Song, Z. Zhang, J. Cai, A. Watanabe, Nickel phosphide electrocatalysts for hydrogen evolution reaction. Catalysts 10, 188 (2020)

    Article  CAS  Google Scholar 

  30. C. Hu, S. Tu, N. Tian, T. Ma, Y. Zhang, H. Huang, Photocatalysis enhanced by external fields. Angew. Chem. Int. Ed. 60, 16309–16328 (2021)

    Article  CAS  Google Scholar 

  31. E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W. Lou, Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 11, 872–880 (2018)

    Article  CAS  Google Scholar 

  32. A. Huang, K.N. Dinh, X. Sun, Q. Yan, Z. Wang, Surface treated nickel phosphide nanosheet with oxygen as highly efficient bifunctional electrocatalysts for overall water splitting. Appl. Surf. Sci. 496, 143741 (2019)

    Article  CAS  Google Scholar 

  33. A.R.J. Kucernak, V.N.N. Sundaram, Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. J. Mater. Chem. A 2, 17435–17445 (2014)

    Article  CAS  Google Scholar 

  34. X.K. Wei, D. Xiong, L. Liu, R.E. Dunin-Borkowski, Self-epitaxial hetero-nanolayers and surface atom reconstruction in electrocatalytic nickel phosphides. ACS Appl. Mater. Interfaces 12, 21616–21622 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Wei, C.-H. Shin, C. Gyan-Barimah, E.B. Tetteh, G. Park, J.-S. Yu, Positive self-reconstruction in an FeNiMo phosphide electrocatalyst for enhanced overall water splitting. Sustain. Energy Fuels 5, 5789–5797 (2021)

    Article  CAS  Google Scholar 

  36. S. Wen, G. Chen, W. Chen, M. Li, B. Ouyang, X. Wang, D. Chen, T. Gong, X. Zhang, J. Huang, K. Ostrikov, Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high current densities. J. Mater. Chem. A 9, 9918–9926 (2021)

    Article  CAS  Google Scholar 

  37. K. Wu, X. Wei, D. Li, P. Hu, Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting. J. Mater. Sci. Technol. 99, 270–276 (2022)

    Article  Google Scholar 

  38. J. Bian, Z. Song, X. Li, Y. Zhang, C. Cheng, Nickel iron phosphide ultrathin nanosheets anchored on nitrogen-doped carbon nanoflake arrays as a bifunctional catalyst for efficient overall water splitting. Nanoscale 12, 8443–8452 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. U. De Silva, J. See, W.P.R. Liyanage, J. Masud, J. Wu, W. Yang, W.-T. Chen, D. Prendergast, M. Nath, Understanding the structural evolution of a nickel chalcogenide electrocatalyst surface for water oxidation. Energy Fuels 35, 4387–4403 (2021)

    Article  CAS  Google Scholar 

  40. L. Fei, H. Sun, R. Ran, W. Zhou, Z. Shao, Self-supported nickel phosphide electrode for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Ind. Eng. Chem. Res. 60, 1185–1193 (2021)

    Article  CAS  Google Scholar 

  41. X. Gao, K. Lu, J. Chen, J. Min, D. Zhu, M. Tan, NiCoP-CoP heterostructural nanowires grown on hierarchical Ni foam as a novel electrocatalyst for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 46, 23205–23213 (2021)

    Article  CAS  Google Scholar 

  42. J. Xia, K. Dhaka, M. Volokh, G. Peng, Z. Wu, Y. Fu, M.C. Toroker, X. Wang, M. Shalom, Nickel phosphide decorated with trace amount of platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction. Sustain. Energy Fuels 3, 2006–2014 (2019)

    Article  CAS  Google Scholar 

  43. H. Liang, A.N. Gandi, D.H. Anjum, X. Wang, U. Schwingenschlögl, H.N. Alshareef, Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 16, 7718–7725 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. M. Guo, S. Song, S. Zhang, Y. Yan, K. Zhan, J. Yang, B. Zhao, Fe-doped Ni-Co phosphide nanoplates with planar defects as an efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain. Chem. Eng. 8, 7436–7444 (2020)

    Article  CAS  Google Scholar 

  45. H. Huang, C. Yu, C. Zhao, X. Han, J. Yang, Z. Liu, S. Li, M. Zhang, J. Qiu, Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy 34, 472–480 (2017)

    Article  CAS  Google Scholar 

  46. W. Chen, I.K. Mishra, Z. Qin, L. Yu, H. Zhou, J. Sun, F. Zhang, S. Chen, G.E. Wenya, Y. Yu, Z.M. Wang, H.-Z. Song, Z. Ren, Nickel phosphide based hydrogen producing catalyst with low overpotential and stability at high current density. Electrochim. Acta 299, 756–761 (2019)

    Article  CAS  Google Scholar 

  47. X. Wang, Y.V. Kolen’ko, X.Q. Bao, K. Kovnir, L. Liu, One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem. 54, 8188–8192 (2015)

    Article  CAS  Google Scholar 

  48. X. Yu, J. Zhao, M. Johnsson, Interfacial engineering of nickel hydroxide on cobalt phosphide for alkaline water electrocatalysis. Adv. Func. Mater. 31, 2101578 (2021)

    Article  CAS  Google Scholar 

  49. Z. Ge, B. Fu, J. Zhao, X. Li, B. Ma, Y. Chen, A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. J. Mater. Sci. 55, 14081–14104 (2020)

    Article  CAS  Google Scholar 

  50. S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 6, 8069–8097 (2016)

    Article  CAS  Google Scholar 

  51. A.G. Oshchepkov, G. Braesch, A. Bonnefont, E.R. Savinova, M. Chatenet, Recent advances in the understanding of nickel-based catalysts for the oxidation of hydrogen-containing fuels in alkaline media. ACS Catal. 10, 7043–7068 (2020)

    Article  CAS  Google Scholar 

  52. S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud, A.T. Bell, Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 119, 7243–7254 (2015)

    Article  CAS  Google Scholar 

  53. E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T.J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 4, 3800–3821 (2014)

    Article  CAS  Google Scholar 

  54. C.C. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600, 1771–1779 (2006)

    Article  CAS  Google Scholar 

  56. Z. Yao, G. Wang, Y. Shi, Y. Zhao, J. Jiang, Y. Zhang, H. Wang, One-step synthesis of nickel and cobalt phosphide nanomaterials via decomposition of hexamethylenetetramine-containing precursors. Dalton Trans. 44, 14122–14129 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. Y. Feng, X.-Y. Yu, U. Paik, Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chem. Commun. 52, 1633–1636 (2016)

    Article  CAS  Google Scholar 

  58. C. Shuai, Z. Mo, X. Niu, P. Zhao, Q. Dong, Y. Chen, N. Liu, R. Guo, Nickel/cobalt bimetallic phosphides derived metal-organic frameworks as bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. J. Alloy. Compd. 847, 156514 (2020)

    Article  CAS  Google Scholar 

  59. T. Priamushko, R. Guillet-Nicolas, M. Yu, M. Doyle, C. Weidenthaler, H. Tüysüz, F. Kleitz, Nanocast mixed Ni-Co-Mn oxides with controlled surface and pore structure for electrochemical oxygen evolution reaction. ACS Appl. Energy Mater. 3, 5597–5609 (2020)

    Article  CAS  Google Scholar 

  60. M. Fang, G. Dong, R. Wei, J.C. Ho, Hierarchical nanostructures: design for sustainable water splitting. Adv. Energy Mater. 7, 1700559 (2017)

    Article  CAS  Google Scholar 

  61. D. Khalafallah, M. Zhi, Z. Hong, Recent trends in synthesis and investigation of nickel phosphide compound/hybrid-based electrocatalysts towards hydrogen generation from water electrocatalysis. Top. Curr. Chem. 377, 1–48 (2019)

    CAS  Google Scholar 

  62. X. Wang, Y.V. Kolen’ko, X.Q. Bao, K. Kovnir, L. Liu, One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem. 127, 8306–8310 (2015)

    Article  Google Scholar 

  63. R. Wang, C. Xu, J.-M. Lee, High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 19, 210–221 (2016)

    Article  CAS  Google Scholar 

  64. H. Li, J. Xiang, H. Li, Branched heterostructures of nickel-copper phosphides as an efficient electrocatalyst for the hydrogen evolution reaction. J. Mater. Sci. Mater. Electron. 31, 11425–11433 (2020)

    Article  CAS  Google Scholar 

  65. L. Ji, H. Zheng, Y. Wei, Y. Fang, J. Du, T. Wang, S. Wang, Formation of cobalt phosphide nanodisks as a bifunctional electrocatalyst for enhanced water splitting. Sustain. Energy Fuels 4, 1616–1620 (2020)

    Article  CAS  Google Scholar 

  66. P. Wang, Z. Pu, Y. Li, L. Wu, S. Mu, Iron-doped nickel phosphide nanosheet arrays: an efficient bifunctional electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 9, 26001–26007 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Tianjin Enterprise Science and Technology commissioner Project (No. 20YDTPJC00400), Natural Science Foundation of Tianjin (No. 20JCYBJC00550), and Tianjin Key Laboratory of Building Green Functional Materials Open Foundation (TJBGFM-2019-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengang Guo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Guo, Z., Yang, F. et al. Hyperbranched NixPy/NiCoP Arrays Based on Nickel Foam Electrode for Efficient and Stable Electrocatalytic Hydrogen Evolution. Electrocatalysis 13, 611–621 (2022). https://doi.org/10.1007/s12678-022-00747-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00747-1

Keywords

Navigation