Skip to main content
Log in

Effect of Heat Treatment and NC Ni Coating on Electrochemical and Hydrogen Embrittlement Behaviour of a High Strength Low Alloy (HSLA) Steel

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

As-received (AR) high strength low alloy (HSLA) steel in plate form was subjected to annealing, normalizing, and inter-critical annealing (IA) heat treatments to produce steels with different microstructures having different grain sizes. The AR steel was coated with nanocrystalline (NC) Ni using the pulse current electrodeposition technique. An optical microscope is used to investigate the microstructures of the AR HSLA steel and various heat-treated states. The electrochemical behaviour of the HSLA steels was evaluated by polarization and electrochemical impedance spectroscopic (EIS) studies in 3.5 wt.% NaCl solution. Furthermore, hydrogen embrittlement (HE) and stress corrosion cracking (SCC) behaviour of the HSLA steel of various states were evaluated by a slow strain rate tensile test (SSRT) at a strain rate of 2 ×\({10}^{-6}\) s−1 in 3.5 wt.% NaCl solution. A local electrochemical cell was constructed, and a cathodic overvoltage of 250 mV vs. SCE (saturated calomel electrode) was applied to the tensile specimen by a potentiostat/galvanostat. Potentiodynamic polarization and EIS studies confirmed that NC Ni coating had enhanced the corrosion resistance of the HSLA steel. SSRT results indicated that the AR HSLA steel tends to affect by HE, whereas HSLA steels deposited with NC Ni coating are immune to HE. Scanning electron microscopy fractographic features of the failed samples also exhibited the respective fracture features.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. G. Xu, X. Gan, G. Ma, F. Luo, H. Zou, The development of Ti-alloyed high strength microalloy steel. Mater. Des. 31(6), 2891–2896 (2010). https://doi.org/10.1016/j.matdes.2009.12.032

    Article  CAS  Google Scholar 

  2. F. Jie, Z.B. Wang, Y.L. Kang, Research and development of HSLC steels produced by EAF-CSP technology. Chinese Journal of Engineering, 25(5), 449-454 (2003). https://doi.org/10.13374/j.issn1001-053x.2003.05.042

  3. I.A. Yakubtsov, P. Poruks, J.D. Boyd, Microstructure and mechanical properties of bainitic low carbon high strength plate steels. Mater. Sci. Eng. A 480(1–2), 109–116 (2008). https://doi.org/10.1016/j.msea.2007.06.069

    Article  CAS  Google Scholar 

  4. M.C. Zhao, K. Yang, Y.Y. Shan, Comparison on strength and toughness behaviors of microalloyed pipeline steels with acicular ferrite and ultrafine ferrite. Mater. Lett. 57(9–10), 1496–1500 (2003). https://doi.org/10.1016/S0167-577X(02)01013-3

    Article  CAS  Google Scholar 

  5. F. Xiao, B. Liao, D. Ren, Y. Shan, K. Yang, Acicular ferritic microstructure of a low-carbon Mn-Mo-Nb microalloyed pipeline steel. Mater. Charact. 54(4–5), 305–314 (2005). https://doi.org/10.1016/j.matchar.2004.12.011

    Article  CAS  Google Scholar 

  6. B.K. Panigrahi, Processing of low carbon steel plate and hot strip-an overview. Bull. Mater. Sci. 24(4), 361-371 (2001). https://doi.org/10.1007/BF02708632

  7. R. Song, D. Ponge, D. Raabe, J. G. Speer, and D. K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater. Sci. Eng. A.  Elsevier. 441(1–2), 1–17 (2006). https://doi.org/10.1016/j.msea.2006.08.095

  8. R. Priestner, L. Ali, Strain induced transformation in C-Mn steel during single pass rolling. Mater. Sci. Technol. (United Kingdom) 9(2), 135–141 (1993). https://doi.org/10.1179/mst.1993.9.2.135

    Article  CAS  Google Scholar 

  9. K.S. Ghosh, N. Gao, M.J. Starink, Characterisation of high pressure torsion processed 7150 Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 552, 164–171 (2012). https://doi.org/10.1016/j.msea.2012.05.026

    Article  CAS  Google Scholar 

  10. D.H. Shin, W.J. Kim, W.Y. Choo, Grain refinement of a commercial 0.15%C steel by equal-channel angular pressing. Scr. Mater. 41(3), 259–262 (1999). https://doi.org/10.1016/S1359-6462(99)00156-6

    Article  CAS  Google Scholar 

  11. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr. Mater. 39(9), 1221–1227 (1998). https://doi.org/10.1016/S1359-6462(98)00302-9

    Article  CAS  Google Scholar 

  12. A. Belyakov, Y. Sakai, T. Hara, Y. Kimura, and K. Tsuzaki, Effect of dispersed particles on microstructure evolved in iron under mechanical milling followed by consolidating rolling. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32(7), 1769–1776, (2001). https://doi.org/10.1007/s11661-001-0153-3

  13. B.Q. Han, S. Yue, Processing of ultrafine ferrite steels. J. Mater. Process. Technol. 136(1–3), 100–104 (2003). https://doi.org/10.1016/S0924-0136(02)01014-2

    Article  CAS  Google Scholar 

  14. K.S. Ghosh, D.K. Mondal, Effect of grain size on mechanical electrochemical and hydrogen embrittlement behaviour of a micro-alloy steel. Mater. Sci. Eng., A 559, 693–705 (2013). https://doi.org/10.1016/j.msea.2012.09.011

    Article  CAS  Google Scholar 

  15. P.K. Rout, M.M. Ghosh, K.S. Ghosh, Effect of solution pH on electrochemical and stress corrosion cracking behaviour of a 7150 Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 604, 156–165 (2014). https://doi.org/10.1016/j.msea.2014.02.036

    Article  CAS  Google Scholar 

  16. K.S. Ghosh, D.K. Mondal, Mechanical and electrochemical behavior of a high strength low alloy steel of different grain sizes. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44(8), 3608–3622 (2013). https://doi.org/10.1007/s11661-013-1745-4

  17. B.R. Kumar, A review on the importance of microalloying in steel. Int. J. Mech. Eng. Technol. 5(2), 187–193 (2014)

    Google Scholar 

  18. N. Eliaz, A. Shachar, B. Tal, D. Eliezer, Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels. Eng. Fail. Anal. 9(2), 167–184 (2002). https://doi.org/10.1016/S1350-6307(01)00009-7

    Article  CAS  Google Scholar 

  19. W.K. Kim, S.U. Koh, B.Y. Yang, K.Y. Kim, Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels. Corros. Sci. 50(12), 3336–3342 (2008). https://doi.org/10.1016/j.corsci.2008.09.030

    Article  CAS  Google Scholar 

  20. P. Kar, P. Siva Prasad, M.M. Ghosh, and K. S. Ghosh, Electrochemical and hydrogen embrittlement of a micro-alloy steel coated with nanocrystalline nickel by pulse electrodeposition. Philos. Mag. Lett. 100(4), 162–170 (2020). https://doi.org/10.1080/09500839.2020.1736356

  21. C. Park, N. Kang, S. Liu, Effect of grain size on the resistance to hydrogen embrittlement of API 2W Grade 60 steels using in situ slow-strain-rate testing. Corros. Sci. 128(September), 33–41 (2017). https://doi.org/10.1016/j.corsci.2017.08.032

    Article  CAS  Google Scholar 

  22. K. Banerjee, U.K. Chatterjee, Hydrogen embrittlement of a HSLA-100 steel in seawater. ISIJ Int. 39(1), 47–55 (1999). https://doi.org/10.2355/isijinternational.39.47

    Article  CAS  Google Scholar 

  23. H.J. Cleary, N.D. Greene, Corrosion properties of iron and steel. Corros. Sci. 7(12), 821–831 (1967). https://doi.org/10.1016/S0010-938X(67)80115-X

    Article  CAS  Google Scholar 

  24. R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering (John Wiley & Sons, New York, 1985)

    Google Scholar 

  25. H. Luo, Y.C. Guan, K.N. Han, Inhibition of mild steel corrosion by sodium dodecyl benzene sulfonate and sodium oleate in acidic solutions. Corrosion 54(8), 619–627 (1998). https://doi.org/10.5006/1.3287638

    Article  CAS  Google Scholar 

  26. J.L. Albarran, L. Martinez, H.F. Lopez, Effect of heat treatment on the stress corrosion resistance of a microalloyed pipeline steel. Corros. Sci. 41(6), 1037–1049 (1999). https://doi.org/10.1016/S0010-938X(98)00139-5

    Article  CAS  Google Scholar 

  27. K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51(19), 5743–5774 (2003). https://doi.org/10.1016/j.actamat.2003.08.032

    Article  CAS  Google Scholar 

  28. D.O. Northwood, A.T. Alpas, Mechanical and tribological properties of nanocrystalline and nanolaminated surface coatings. Nanostructured Mater. 10(5), 777–793 (1998). https://doi.org/10.1016/S0965-9773(98)00115-9

    Article  CAS  Google Scholar 

  29. Z.B. Wang, N.R. Tao, W. Wang, G. Liu, J. Lu and K. Lu, Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater. Sci. Eng. A 352(1–2), 144–149 (2003). https://doi.org/10.1016/S0921-5093(02)00870-5

    Article  CAS  Google Scholar 

  30. H.S. Kim, M.B. Bush, Effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostructured Mater. 11(3), 361–367 (1999). https://doi.org/10.1016/S0965-9773(99)00052-5

    Article  CAS  Google Scholar 

  31. A. Balyanov et al., Corrosion resistance of ultra fine-grained Ti. Scr. Mater. 51(3), 225–229 (2004). https://doi.org/10.1016/j.scriptamat.2004.04.011

    Article  CAS  Google Scholar 

  32. R. Rofagha, R. Langer, A.M. El-Sherik, U. Erb, G. Palumbo, K.T. Aust, The corrosion behaviour of nanocrystalline nickel. Scr. Metall. Mater. 25(12), 2867–2872 (1991). https://doi.org/10.1016/0956-716X(91)90171-V

    Article  CAS  Google Scholar 

  33. L. Wang, Y. Gao, T. Xu, Q. Xue, A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Mater. Chem. Phys. 99(1), 96–103 (2006). https://doi.org/10.1016/j.matchemphys.2005.10.014

    Article  CAS  Google Scholar 

  34. H. Natter, M. Schmelzer, R. Hempelmann, Nanocrystalline nickel and nickel-copper alloys: synthesis, characterization, and thermal stability. J. Mater. Res. 13(5), 1186–1197 (1998). https://doi.org/10.1557/JMR.1998.0169

    Article  CAS  Google Scholar 

  35. L. Wang, J. Zhang, Y. Gao, Q. Xue, L. Hu, T. Xu, Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution. Scr. Mater. 55(7), 657–660 (2006). https://doi.org/10.1016/j.scriptamat.2006.04.009

    Article  CAS  Google Scholar 

  36. K. Takasawa, Y. Wada, R. Ishigaki, R. Kayano, Effects of grain size on hydrogen environment embrittlement of high strength low alloy steel in 45 MPa gaseous hydrogen. Mater. Trans. 51(2), 347–353 (2010). https://doi.org/10.2320/MATERTRANS.M2009241

    Article  CAS  Google Scholar 

  37. Y.H. Jang, S.S. Kim, C.D. Yim, C. Lee, S.J. Kim, Corrosion behaviour of friction stir welded AZ31B Mg in 3·5%NaCl solution. Corros. Eng. Sci. Technol. 42(2), 119–122 (2007). https://doi.org/10.1179/174327807X196834

    Article  CAS  Google Scholar 

  38. E. Sikora, X.J. Wei, B.A. Shaw, Corrosion behavior of nanocrystalline bulk Al-Mg-based alloys. Corrosion 60(4), 387–398 (2004). https://doi.org/10.5006/1.3287748

    Article  CAS  Google Scholar 

  39. S.G. Wang, C.B. Shen, K. Long, T. Zhang, F.H. Wang, Z.D. Zhang, The electrochemical corrosion of bulk nanocrystalline ingot iron in acidic sulfate solution. J. Phys. Chem. B 110(1), 377–382 (2006). https://doi.org/10.1021/jp0538971

    Article  CAS  PubMed  Google Scholar 

  40. P.Q. Dai, C. Zhang, J.C. Wen, H.C. Rao, Q.T. Wang, Tensile properties of electrodeposited nanocrystalline Ni-Cu alloys. J. Mater. Eng. Perform. 25(2), 594–600 (2016). https://doi.org/10.1007/s11665-016-1881-2

    Article  CAS  Google Scholar 

  41. Y. Li, F. Wang, G. Liu, Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel. Corrosion 60(10), 891–896 (2004). https://doi.org/10.5006/1.3287822

    Article  CAS  Google Scholar 

  42. L. Shi, C. Sun, P. Gao, F. Zhou, W. Liu, Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating. Appl. Surf. Sci. 252(10), 3591–3599 (2006). https://doi.org/10.1016/j.apsusc.2005.05.035

    Article  CAS  Google Scholar 

  43. S.A. Lajevardi, T. Shahrabi, Effects of pulse electrodeposition parameters on the properties of Ni-TiO 2 nanocomposite coatings. Appl. Surf. Sci. 256(22), 6775–6781 (2010). https://doi.org/10.1016/j.apsusc.2010.04.088

    Article  CAS  Google Scholar 

  44. C.A. Huang, C.Y. Chen, C.C. Hsu, C.S. Lin, Characterization of Cr-Ni multilayers electroplated from a chromium(III)-nickel(II) bath using pulse current. Scr. Mater. 57(1), 61–64 (2007). https://doi.org/10.1016/j.scriptamat.2007.02.004

    Article  CAS  Google Scholar 

  45. R. Rofagha, S. Splinter, U. Erb, N. Mclntyre, materials, and undefined 1994, XPS characterization of the passive films formed on nanocrystalline nickel in sulphuric acid. Elsevier. Accessed: Jan. 30, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0965977394901295

  46. W.A. Badawy, F.M. Al-Kharafi and J.R. Al-Ajmi, Electrochemical behaviour of cobalt in aqueous solutions at different pH. J. Appl. Electrochem. 30(6), 693-704 (2000). https://doi.org/10.1023/A:1003893122201

  47. L. Wang, Y. Gao, Q. Xue, H. Liu, T. Xu, Graded composition and structure in nanocrystalline Ni-Co alloys for decreasing internal stress and improving tribological properties. J. Phys. D. Appl. Phys. 38(8), 1318–1324 (2005). https://doi.org/10.1088/0022-3727/38/8/033

    Article  CAS  Google Scholar 

  48. C.-C. Yang, Pulsed electrodeposition of copper/nickel multilayers on a rotating disk electrode. J. Electrochem. Soc. 142(9), 3034 (1995). https://doi.org/10.1149/1.2048681

    Article  CAS  Google Scholar 

  49. W. Hui, H. Zhang, Y. Zhang, X. Zhao, C. Shao, Effect of nickel on hydrogen embrittlement behavior of medium-carbon high strength steels. Mater. Sci. Eng. A 674, 615–625 (2016). https://doi.org/10.1016/j.msea.2016.08.028

    Article  CAS  Google Scholar 

  50. A.J. West, M.I.R. Louthan, Hydrogen effects on the tensile properties of 21–6–9 stainless steel. Met.Trans. a, 13(11), 2049–2058 (1982). https://doi.org/10.1007/bf02645950

  51. D.P. Abraham, C.J. Altstetter, The effect of hydrogen on the yield and flow stress of an austenitic stainless steel. Metall. Mater. Trans. A 26(11), 2849–2858 (1995). https://doi.org/10.1007/BF02669643

    Article  Google Scholar 

  52. K.S. Ghosh, D.K. Mondal, Effect of grain size on mechanical electrochemical and hydrogen embrittlement behaviour of a micro-alloy steel. Mater. Sci. Eng. A 559, 693–705 (2013). https://doi.org/10.1016/j.msea.2012.09.011

    Article  CAS  Google Scholar 

  53. G.M. Pressouyre, I.M. Bernstein, A quantitative analysis of hydrogen trapping. Metall. Trans. A 9(11), 1571–1580 (1978). https://doi.org/10.1007/BF02661939

    Article  Google Scholar 

  54. S. Lynch, Hydrogen embrittlement phenomena and mechanisms. Corr. Rev. Walter de Gruyter, 30(3–4), 105–123 (2012) https://doi.org/10.1515/corrrev-2012-0502

  55. C.F. Dong, X.G. Li, Z.Y. Liu, Y.R. Zhang, Hydrogen-induced cracking and healing behaviour of X70 steel. J. Alloys Compd. 484(1–2), 966–972 (2009). https://doi.org/10.1016/j.jallcom.2009.05.085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge M/s Tata Steel, Jamshedpur, India, for providing the micro-alloy steel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Siva Prasad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, P.S., Ghosh, K.S. Effect of Heat Treatment and NC Ni Coating on Electrochemical and Hydrogen Embrittlement Behaviour of a High Strength Low Alloy (HSLA) Steel. Electrocatalysis 13, 551–566 (2022). https://doi.org/10.1007/s12678-022-00744-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00744-4

Keywords

Navigation