Skip to main content

Advertisement

Log in

NiTiP-Coated Ti as Low-cost Bipolar Plates for Water Electrolysis with Polymer Electrolyte Membranes

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Use of hydrogen produced with a renewable energy could help to mitigate problems associated with global warming. There is hence a need to increase use of hydrogen as a fuel, and for that reason, use of household fuel cells and vehicles powered by fuel cells has been increasing rapidly in recent years. Here we report the result of an effort to produce low-cost hydrogen in a polymer electrolyte membrane (PEM) water electrolysis cell. We found that Ti bipolar plates coated with nickel titanium phosphide (NiTiP) could be substituted for the Pt-coated Ti bipolar plates that are generally used in PEM water electrolysis systems, and we report here the efficacy of NiTiP-sputtered Ti bipolar plates in such systems. We found that in most comparisons with reported results, the efficiency of water electrolysis was higher with NiTiP-sputtered Ti bipolar plates than with bipolar plates coated with precious metals. NiTiP-sputtered Ti plates had a very low and constant resistance before and after voltage application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Copyright 2018 Elsevier, License Number 4975071302333

Similar content being viewed by others

References

  1. M. Maier, K. Smith, J. Dodwell, G. Hinds, P.R. Shearing, D.J.L. Brett, Mass transport in PEM water electrolyzers: a review. Int. J. Hydrog. Ener. 47, 30–56 (2022)

    Article  CAS  Google Scholar 

  2. M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Comprehensive review on PEM water electrolysis. Int J. Hydrogen Energ. 38, 4901–4934 (2013)

    Article  CAS  Google Scholar 

  3. L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden, E. Standen, Development of Water Electrolysis in the European Union. (Cambridge (UK), Lausanne (CH): Element Energy, E4tech Sarl, 2014) pp. 35–36 https://www.fch.europa.eu/sites/default/files/study%20electrolyser_0-Logos_0.pdf

  4. S. Lædre, O.E. Kongstein, A. Oedegaard, H. Karoliussen, F. Seland, Materials for proton exchange membrane water electrolyzer bipolar plates. Int. J. Hydrogen Energ. 42, 2713–2723 (2017)

    Article  Google Scholar 

  5. A.V. Nikiforov, I.M. Petrushina, E. Christensen, A.L. Tomás-García, N.J. Bjerrum, Corrosion behaviour of construction materials for high temperature steam electrolyzers. Int. J. Hydrogen Energ. 36, 111–119 (2011)

    Article  CAS  Google Scholar 

  6. T.J. Toops, M.P. Brady, F.-Y. Zhang, H.M. Meyer, K. Ayers, A. Roemer, L. Dalton, Evaluation of nitrided titanium separator plates for proton exchange membrane electrolyzer cells. J. Power Sources 272, 954–960 (2014)

    Article  CAS  Google Scholar 

  7. G. Chisholm, P.J. Kitson, N.D. Kirkaldy, L.G. Bloor, L. Cronin, 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture. Energy Environ. Sci. 7, 3026–3032 (2014)

    Article  CAS  Google Scholar 

  8. A.S. Gago, A.S. Ansar, P. Gazdzicki, N. Wagner, J. Arnold, K.A. Friedrich, Low cost bipolar plates for large scale PEM electrolyzers. ECS Trans. 64, 1039–1048 (2014)

    Article  CAS  Google Scholar 

  9. M. Langemann, D.L. Fritz, M. Müller, D. Stolten, Validation and characterization of suitable materials for bipolar plates in PEM water electrolysis. Int. J. Hydrogen Energ. 40, 11385–11391 (2015)

    Article  CAS  Google Scholar 

  10. P. Lettenmeier, R. Wang, R. Abouatallah, F. Burggraf, A.S. Gago, K.A. Friedrich, Coated stainless steel bipolar plates for proton exchange membrane electrolyzers. J. Electrochem Soc. 163, F3119–F3124 (2016)

    Article  CAS  Google Scholar 

  11. P. Lettenmeier, R. Wang, R. Abouatallah, B. Saruhan, O. Freitag, P. Gazdzicki, T. Morawietz, R. Hiesgen, A.S. Gago, K.A. Friedrich, Low-cost and durable bipolar plates for proton exchange membrane electrolyzers. Sci. Rep. 7(44035), 1–12 (2017)

    Google Scholar 

  12. M. Ruge, J. Drnec, B. Rahn, F. Reikowski, D.A. Harrington, F. Carlà, R. Felici, J. Stettner, O.M. Magnussen, Structural reorganization of Pt(111) electrodes by electrochemical oxidation and reduction. J. Am. Chem. Soc. 139(12), 4532–4539 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. N. Suzuki, T. Horie, G. Kitahara, M. Murase, K. Shinozaki, Y. Morimoto, Novel noble-metal-free electrocatalyst for oxygen evolution reaction in acidic and alkaline media. Electrocatalysis 7, 115–120 (2016)

    Article  CAS  Google Scholar 

  14. N. Suzuki, R. Asahi, Y. Kishida, Y. Masuoka, J. Sugiyama, Measurement and ab initio calculation of the structural parameters and physical properties of 3d transition intermetallics TiMP (M = Cr, Mn, Fe Co, or Ni). Mater. Res. Express 4(046505), 1–13 (2017)

    Google Scholar 

  15. K.R. Cooper, M. Smith, Electrical test methods for on-line fuel cell ohmic resistance measurement. J. Power Sources 160, 1088–1095 (2006)

    Article  CAS  Google Scholar 

  16. V.J. Field, Field Experience with hydrogenics’ prototype stack and system for MW PEM electrolysis. proc. 2nd Int. Workshop on Durability and Degradation Issues in PEM Electrolysis Cells and Their Components. (Freiburg, Germany, 2016). http://www.mefco2.eu/pdf/4.%20Field%20Experience%20with%20Hydrogenics'%20Prototype%20Stack%20and%20System%20for%20MW%20PEM%20electrolysis.pdf

  17. E. Anderson, PEM Electrolyzer reliability based on 20 years of product experience in commercial markets. proc. 2nd Int. Workshop on Durability and Degradation Issues in PEM Electrolysis Cells and Their Components. (Freiburg, Germany, 2016) https://www.sintef.no/globalassets/project/novel/pdf/presentations/03-05_proton_anderson_public.pdf

  18. P. Pewinksi, AREVAH2Gen - PEM Electrolyser Cost Reduction Strategy. (Herten, Germany, 2015) https://www.sintef.no/globalassets/project/novel/pdf/presentations/03-05_proton_anderson_public.pdf

  19. K.A. Lewinski, D. van der Vliet, S.M. Luopa, NSTF advances for PEM electrolysis - the effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers. ECS Trans. 69, 893–917 (2015)

    Article  CAS  Google Scholar 

  20. M. Suermann, T.J. Schmidt, F.N. Buchi, Investigation of mass transport losses in polymer electrolyte electrolysis cells. ECS Trans. 69, 1141–1148 (2015)

    Article  CAS  Google Scholar 

  21. M. Bernt, H.A. Gasteiger, Influence of ionomer content in IrO2/TiO2 electrodes on PEM water electrolyzer performance. J. Electrochem. Soc. 163, F3179–F3189 (2016)

    Article  CAS  Google Scholar 

  22. E. Anderson, K. Ayers, C. Capuano, R, Focus areas based on 60,000 h life PEM water electrolysis stack experience. proc. 1st Int. Workshop on Durability and Degradation Issues in PEM Electrolysis Cells and their components. (Freiburg, Germany, 2013) https://www.sintef.no/288globalassets/project/novel/pdf/1-1_proton_everett_public.pdf

  23. K.E. Ayers, E.B. Anderson, C. Capuano, B. Carter, L. Dalton, G. Hanlon, J. Manco, M. Niedzwiecki, Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 33, 3–15 (2010)

    Article  CAS  Google Scholar 

  24. A. Buttlera, H. Spliethoff, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew. Sust. Energ. Rev. 82, 2440–2454 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Wakayama.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakayama, H., Yamazaki, K. NiTiP-Coated Ti as Low-cost Bipolar Plates for Water Electrolysis with Polymer Electrolyte Membranes. Electrocatalysis 13, 479–485 (2022). https://doi.org/10.1007/s12678-022-00737-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00737-3

Keywords

Navigation