Skip to main content
Log in

Electrochemical Oxidation of Ciprofloxacin on COOH-Functionalized Multi-Walled Carbon Nanotube–Coated Vitreous Carbon Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This study deals with the use of a COOH-functionalized multi-walled carbon nanotube–coated glassy carbon electrode (f-MWCNT-coated GCE) to investigate the electrochemical oxidation of ciprofloxacin (CIP). The electrochemical behavior of CIP is investigated using cyclic voltammetry and square wave voltammetry in PBS buffer aqueous solutions. Cyclic voltammograms have shown that (1) CIP provided a well-defined irreversible oxidation peak at a potential of around 1 V and (2) modifying glassy carbon electrode surface by MWCNT leads to a significant improvement 3.6 and 1.5 folds of the electrochemical response as compared to that at bare GCE, and MWCNT-coated GCE, respectively. This improvement in the electrocatalytic activity of the electrode is attributed to the decrease of the charge transfer resistance. The influence of some controlled parameters (scan rate, pH, successive potential scans, and SMX concentration) on the electrochemical oxidation of CIP is studied. It has been shown that CIP oxidizes according to a diffusion-controlled mechanism involving the transfer of one electron and two protons. Furthermore, this study demonstrates that the zwitterionic form of CIP is thermodynamically more reactive to electrochemical oxidation than the cationic and anionic forms. Under optimized conditions, a linear calibration curve was obtained by square wave voltammetry for CIP in the concentration range 5–100 µM with a detection limit of 0.16 µM. The f-MWCNT-coated GCE showed great improvement, as compared to bare GCE, in the anodic oxidation reactivity of CIP with high simplicity of preparation, selectivity, repeatability, and reproducibility. Also, CIP analytical determination was performed successfully, using f-MWCNT-coated GCE, in-hospital effluent, treated domestic wastewater effluent, and natural water source, allowing promising and feasible applications in on-site environmental monitoring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S.A. Brown, Fluoroquinolones in animal health. J. Vet. Pharmacol. Ther. 19, 1–14 (1996)

    Article  CAS  Google Scholar 

  2. P.C. Appelbaum, P.A. Hunter, The fluoroquinolone antibacterials: past, present and future perspectives. Int. J. Antimicrob. Ag. 16, 5–15 (2000)

    Article  CAS  Google Scholar 

  3. L.J. Zivanovic, G. Zigic, M. Zecevic, Investigation of chromatographic conditions for the separation of ofloxacin and its degradation products. J. Chromatogr. A 1119, 224–230 (2006)

    Article  CAS  Google Scholar 

  4. F. Tewes, J. Brillault, B. Lamy, P.O. Connell, J.C. Olivier, W. Couet, A.M. Healy, Ciprofloxacin-loaded inorganic-organic composite microparticles to treat bacterial lung infection. Mol. Pharmaceut. 13, 100–112 (2016)

    Article  CAS  Google Scholar 

  5. S. Suryoprabowo, L. Liu, J. Peng, H. Kuang, C. Xu, Development of a broad specific monoclonal antibody for fluoroquinolone analysis. Food Anal. Methods 7, 2163–2168 (2014)

    Article  Google Scholar 

  6. B. Huang, Y. Yin, L. Lu, H. Ding, L. Wang, T. Yu, J.J. Zhu, X.D. Zheng, Y.Z. Zhang, Preparation of high-affinity rabbit monoclonal antibodies for ciprofloxacin and development of an indirect competitive ELISA for residues in milk. J. Zhejiang Univ. Sci. B 11, 812–818 (2010)

    Article  CAS  PubMed Central  Google Scholar 

  7. X.V. Doorslaer, J. Dewulf, H.V. Langenhove, K. Demeestere, Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Sci. Total Environ. 16(5–15), 5–15 (2014)

    Google Scholar 

  8. R.H.O. Montes, M.C. Marra, M.M. Rodrigues, E.M. Richter, R.A.A. Munoz, Fast determination of ciprofloxacin by batch injection analysis with amperometric detection and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electroanalysis 26, 432–438 (2014)

    Article  CAS  Google Scholar 

  9. M. Tumini, O. Nagel, M.P. Molina, R. Althaus, Microbiological assay with bacillus licheniformis for the easy detection of quinolones in milk. Int. Dairy J. 64, 9–13 (2017)

    Article  CAS  Google Scholar 

  10. J.-H. Choi, M.I.R. Mamun, A.M.A. El-Aty, J.-H. Park, E.-H. Shin, J.Y. Park, S.-K. Cho, S.C. Shin, K.B. Lee, J.-H. Shim, Development of a single-step precipitation cleanup method for the determination of enrofloxacin, ciprofloxacin, and danofloxacin in porcine plasma. Food Chem. 127, 1878–1883 (2011)

    Article  CAS  Google Scholar 

  11. A. Zotou, N. Miltiadou, Sensitive LC determination of ciprofloxacin in pharmaceutical preparations and biological fluids with fluorescence detection. J. Pharm. Biomed. Anal. 28, 559–568 (2002)

    Article  CAS  Google Scholar 

  12. S. Watabe, Y. Yokoyama, K. Nakazawa, K. Shinozaki, R. Hiraoka, K. Takeshita, Yukio Suzuki, Simultaneous measurement of pazufloxacin, ciprofloxacin, and levofloxacin in human serum by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B. 878, 1555–1561 (2010)

    Article  CAS  Google Scholar 

  13. M.Y. Pinero, M. Fuenmayor, L. Arce, R. Bauza, M. Valcarcel, A simple sample treatment for the determination of enrofloxacin and ciprofloxacin in raw goat milk. Microchem. J. 110, 533–537 (2013)

    Article  CAS  Google Scholar 

  14. B. Chen, J. Han, Y. Wang, C. Sheng, Y. Liu, G. Zhang, Y. Yan, Separation, enrichment and determination of ciprofloxacin using thermoseparating polymer aqueous two-phase system combined with high performance liquid chromatography in milk, egg, and shrimp samples. Food Chem. 148, 105–111 (2014)

    Article  CAS  Google Scholar 

  15. J. Vella, F. Busuttil, N.S. Bartolo, C. Sammut, V. Ferrito, A. Serracino-Inglotta, L.M. Azzopardia, G. LaFerla, A simple HPLC–UV method for the determination of ciprofloxacin in human plasma. J. Chromatogr. B. 989, 80–85 (2015)

    Article  CAS  Google Scholar 

  16. H.J. Kim, K.A. Seo, H.M. Kim, E.S. Jeong, J.L. Ghim, S.H. Lee, Y.M. Lee, D.H. Kim, J.G. Shin, Simple and accurate quantitative analysis of 20 anti-tuberculosis drugs in human plasma using liquid chromatography–electrospray ionization–tandem mass spectrometry. J. Pharm. Biomed. Anal. 102, 9–16 (2015)

    Article  CAS  Google Scholar 

  17. K. Jindal, M. Narayanam, S. Singh, A systematic strategy for the identification and determination of pharmaceuticals in environment using advanced LC–MS tools: application to ground water samples. J. Pharm. Biomed. Anal. 108, 86–96 (2015)

    Article  CAS  Google Scholar 

  18. L. Lucatello, P. Cagnardi, F. Capolongo, C. Ferraresi, F. Bernardi, C. Montesissa, Development and validation of an LC–MS/MS/MS method for the quantification of fluoroquinolones in several matrices from treated turkeys. Food Control 48, 2–11 (2015)

    Article  CAS  Google Scholar 

  19. L. Fotouhi, M. Aahyari, Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloids Surf. B. 81, 110–114 (2010)

    Article  CAS  Google Scholar 

  20. A.A. Ensafi, M. Taei, T. Khayamian, F. Hasanpour, Simultaneous voltammetric determination of enrofloxacin and ciprofloxacin in urine and plasma using multiwall carbon nanotubes modified glassy carbon electrode by least-squares support vector machines. Anal. Sci. 26, 803–808 (2010)

    Article  CAS  Google Scholar 

  21. J.M.P.J. Garrido, M. Melle-Franco, K. Strutynski, F. Borges, C.M.A. Brett, E.M.P.J. Garrido, β–Cyclodextrin carbon nanotube-enhanced sensor for ciprofloxacin detection. J. Environ Sci. Health C. 52, 313–319 (2016)

  22. C. Yan, J. Li, T. Meng, X. Liu, R. Zhang, Y. Chen, G. Wang, Selective recognition of ciprofloxacin hydrochloride based on molecular imprinted sensor via electrochemical copolymerization of pyrrole and o-phenylenediamine. Int. J. Electrochem. Sci. 11, 6466–6476 (2016)

    Article  CAS  Google Scholar 

  23. H. Bagheri, H. khoshsafar, S. Amidi, Y. Hosseinzadeh Ardakani, Fabrication of an electrochemical sensor based on magnetic multiwalled carbon nanotubes for the determination of ciprofloxacin. Anal. Methods. 8, 3383–3390 (2016)

  24. M. Radicova, M. Behul, M. Marton, M. Vojs, R. Bodor, R. Redhammer, A.V. Stanova, Heavily boron doped diamond electrodes for ultra-sensitive determination of ciprofloxacin in human urine. Electroanalysis 29, 1612–1617 (2017)

    Article  CAS  Google Scholar 

  25. C. Wu, R. Chen, J. Wang, Y. Wang, X. Jing, R. Chen, L. Sun, Y. Yun, Fluorescent molecularly imprinted nanoparticles for selective and rapid detection of ciprofloxacin in aquaculture water. J. Sep. Sci. 41, 3782–3790 (2018)

    Article  CAS  Google Scholar 

  26. N. Yuphintharakun, P. Nurerk, K. Chullasat, P. Kanatharana, F. Davis, D. Sooksawat, O. Bankoed, A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin. Spectroc. Acta A. 201, 382–391 (2018)

    Article  CAS  Google Scholar 

  27. K.R. Reddy, P.K. Brahman, L. Suresh, Fabrication of high performance disposable screen printed electrochemical sensor for ciprofloxacin sensing in biological samples. Measurement 127, 175–186 (2018)

    Article  Google Scholar 

  28. X. Hu, K.Y. Goud, V.S. Kumar, G. Katanante, Z. Li, Z. Zhu, J.L. Marty, Disposable electrochemical aptasensor based on carbon nanotubes-V2O5-chitosan nanocomposite for detection of ciprofloxacin. Sensor. Actuat. B-Chem. 286, 278–286 (2018)

    Article  Google Scholar 

  29. S.G. Surya, S. Khatoon, A.A. Lahcen, A.T.H. Nguen, B.B. Dzantiev, N. Tarannum, K.N. Salama, A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor. R. Soc. Chem. 10, 12823–12832 (2020)

    CAS  Google Scholar 

  30. E. Sari, R. Uzek, M. Duman, A. Denizil, Detection of ciprofloxacin through surface Plasmon resonance nanosensor with specific recognition sites. J. Biomater. Sci. 29(1302–1318), 1302–1318 (2018)

    Article  CAS  Google Scholar 

  31. X. Xu, P. Guo, Z. Luo, Y. Ge, Y. Zhou, R. Chang, W. Du, C. Chang, Q. Fu, Preparation and characterization of surface molecularly imprinted films coated on multiwall carbon nanotubes for recognition and separation of lysozyme with high binding capacity and selectivity. RSC Adv. 7, 18765–18744 (2017)

    Article  CAS  Google Scholar 

  32. P. Gayen, B.P. Chaplin, Selective electrochemical detection of ciprofloxacin with a porous nafion/multi-walled carbon nanotube composite film electrode. ACS Appl. Mater. Interfaces. 8(3), 1615–1626 (2016)

    Article  CAS  Google Scholar 

  33. R. Barabás, G. Katona, E.S. Bogya, M.V. Diudea, A. Szentes, B. Zsirka, J. Kovács, L. Kékedy-Nagy, M. Czikó, Preparation and characterization of carboxyl functionalized multiwall carbon nanotubes–hydroxyapatite composites. Ceram. Int. 41, 12717–12727 (2015)

    Article  Google Scholar 

  34. S. Tajik, H. Beitollahi, R. Zaeimbashi, M. Sheikhshoaei, M.B. Askari, P. Salarizadah, An electrochemical sensor based on V2O5 nanoparticles for the detection of ciprofloxacin. J. Mater. Sci. Mater. Electron. 32, 17558–17567 (2021)

    Article  CAS  Google Scholar 

  35. M. Sabeti, A.A. Ensafi, K.S. Mousaabadi, B. Rezaei, A selective electrochemical sensor based on a modified-glassy carbon electrode using f-MWCNTs-polydopamine for ciprofloxacin detection. IEEE Sens. J. 12, 19714–19721 (2021)

    Article  Google Scholar 

  36. R. Karthik, R. Sasikumar, S. M. Chen, J. V. kumar, A. Elangovan, V. Muthuraj, P. Muthukrishnan, F. M. A. Al-Hemaid, M. A. Ali, M. S. Elshikh, A highly sensitive and selective electrochemical determination of non-steroidal prostate anti-cancer drug nilutamide based on ƒ-MWCNT in tablet and human blood serum sample. J. Colloid Interface Sci. 1095, 226–234 (2018)

  37. C. Slim, N. Tlili, C. Richard, S. Griveau, F. Bedioui, Amperometric detection of diclofenac at a nano-structured multi-wall carbon nanotubes sensing films. Inorg. Chem. Commun. 107, 107454 (2019)

  38. P.J. Britto, K.S.V. Santhanam, P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenergetics. 41, 121–125 (1996)

    Article  CAS  Google Scholar 

  39. C.M.A. Brett, A.M. Oliveira Brett, Electrochemistry: principles, methods and aplications, Oxford Science University Publications, Oxford (1993)

  40. M. Gattrell, D.W. Kirk, A study of electrode passivation during aqueous phenol electrolysis. J. Electrochem. Soc. 140, 903–911 (1993)

    Article  CAS  Google Scholar 

  41. H. Li, D. Zhang, X. Han, B. Xing, Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics. Chemosphere 95, 150–155 (2014)

    Article  CAS  Google Scholar 

  42. L. Fotouhi, A.B. Hashkavayi, M.M. Heravi, Electrochemical behaviour and voltammetric determination of sulphadiazine using a multi-walled carbon nanotube composite film-glassy carbon electrode. J. Exp. Nanosci. 8(947–956), 947–956 (2013)

    Article  CAS  Google Scholar 

  43. F. Yu, S. Sun, S. Han, J. Zheng, J. Ma, Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem. Eng. J. 28, 588–595 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Belhadj Tahar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaabani, A., Ben Jabrallah, T. & Belhadj Tahar, N. Electrochemical Oxidation of Ciprofloxacin on COOH-Functionalized Multi-Walled Carbon Nanotube–Coated Vitreous Carbon Electrode. Electrocatalysis 13, 402–413 (2022). https://doi.org/10.1007/s12678-022-00725-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00725-7

Keywords

Navigation