Skip to main content
Log in

Morphological, Opto-Electrochemical, and Sensing Proprieties of a Mixed Isopolymolybdate [Eu(dmso)8][Eu(η2-NO3)2(dmso)4(α-Mo8O26)0.5][Mo6O19] for Sulfaguanidine Detection

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 04 May 2022

This article has been updated

Abstract

Environmental pollution and human health problems, caused by antibiotics abuse, require detection techniques development. The present review presents a photoelectrochemical impedimetric sensor for sulfaguanidine (Sg) determination. The recognition component is a mixed isopolymolybdate [Eu(dmso)8][Eu(η2-NO3)2(dmso)4(α-Mo8O26)0.5][Mo6O19] (I). The proposed sensor was constructed by ITO surface functionalization by polymeric thin film of poly(allylamine hydrochloride (PAH) and subsequently coated using (I). Scanning electron microscopy (SEM) and contact angle (CA) characterizations greatly confirm the successful immobilization of the sensing thin film. The electrochemical sensor has been able to detect Sg in the range from 10−11 to 10−5 M. In darkness, it has showed dynamic linear range from 10−11 to 10−7 M with a calculated limit of detection (LOD) was 1.1 × 10−12 M. By applying photonic excitation, it has presented a wider linear photoelectrochemical response to Sg ranging from 10−11 to 10−5 M with a reduced LOD of 1.2 × 10−13 M. It is gratifying that interferences with different and similar structure have had no significant interference on Sg determination. Furthermore, it has exhibited excellent regeneration (RSD = 2.2%, n = 6), repeatability (RSD = 3.8%, n = 6) as well as high reproducibility (RSD = 1.9%, n = 6).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. S.H. Ammar, W.A. Abdulnabi, H.D. Abdul kader, Environ. Nanotechnol. Monit. Manag. 13, 100289 (2020)

  2. A. Patel, R. Sadasivan, Prog. Mater. Sci. 118, 100759 (2021)

  3. X. Li, S.C. Pillai, L. Wei, Z. Liu, L. Huang, Q. Huang, X. Jia, D. Hou, H. Song, H. Wang, J. Hazard. Mater. 399, 122946 (2020)

  4. B. Xu, L. Xu, G. Gao, W. Guo, S. Liu, J. Colloid. Interface. Sci. 330, 408 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. N. Chu, Q. Liang, W. Hao, Y. Jiang, P. Liang, R. J. Zeng, Chem. Eng. Sci. 404, 127053 (2021)

  6. Y. Li, M. Xie, X. Zhang, Q. Liu, D. Lin, C. Xu, F. Xie, X. Sun, Sens. Actuators. B. Chem. 278, 126 (2019)

    Article  CAS  Google Scholar 

  7. D. Vasu, A.K. Keyan, S. Sakthinathan, C. Yu, B. Hsu, T. Chiu, J. Wu, Electrocatalysis. (2022). (In press)

  8. N. BortolucciSimioni, T. AlmeidaSilva, G. GabrielOliveira, O. Fatibello-Filho, Sens. Actuators. B Chem. 250, 315 (2017)

    Article  Google Scholar 

  9. A.H. Schebeliski, D. Lima, L.F.Q.P. Marchesi, C.M.F. Calixto, C.A. Pessôa, J. Appl. Electrochem. 48, 471 (2018)

    Article  CAS  Google Scholar 

  10. Z. Liu, Y. Zhang, J. Feng, Q. Han, Q. Wei, Sens. Actuators. B Chem. 287, 551 (2019)

    Article  CAS  Google Scholar 

  11. Y. Sun, H. Gao, L. Xu, G. I.N. Waterhouse, H. Zhang, X. Qiao, Z. Xu, Food. Chem. 332, 127376 (2020)

  12. W. Yang, Y. Qing, Y. Cao, Y. Luan, Y. Lu, T. Liu, W. Xu, W. Huang, T. Li, X. Ni, React. Funct. Polym. 151, 104578 (2020)

  13. X. Yue, Z. Li, S. Zhao, Microchem. J. 159, 105440 (2020)

  14. N.E.A. El Hassani, E. Llobet, L. Popescu, M. Ghita, B. Bouchikhi, N. El Bari, J. Electroanal. Chem. 823, 647 (2018)

    Article  Google Scholar 

  15. L. Li, Z. Lin, Z. Huang, A. Peng, Food. Chem. 281, 57 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. X. Bai, Y. Zhang, W. Gao, D. Zhao, D. Yang, N. Jia, Biosens. Bioelectron. 168, 112522 (2020)

  17. X. Sun, C. Gao, L. Zhang, M. Yan, J. Yu, S. Ge, Sens. Actuators. B. 251, 1 (2017)

    Article  CAS  Google Scholar 

  18. Y. Qiu, J. Li, H. Li, Q. Zhao, H. Wang, H. Fang, D. Fan, W. Wang, Sens. Actuators. B. 208, 485 (2015)

    Article  CAS  Google Scholar 

  19. Y. Xie, M. Zhang, Q. Bin, S. Xie, L. Guo, F. Cheng, W. Lv, Biosens. Bioelectron. 150, 111949 (2020)

  20. A.B. Khélifa, J.C. Mzali, K. Ezzayani, S. Freslon, M.S. Belkhiri, Inorg. Chem. Commun. 70, 56 (2016)

    Article  Google Scholar 

  21. H. Touzi, Y. Chevalier, F. Bessueille, H. Ben Ouada, N. Jaffrezic-Renault, Sens. Actuators. B. 273, 1211 (2018)

  22. X. Sang, X. Xu, L. Bian, X. Liu, Y. Wang, Solid. State. Sci. 83, 8 (2018)

    Article  CAS  Google Scholar 

  23. G. Polido, X. Shi, D. Xu, C. Guo, R. Thai, J.P. Patterson, N.C. Gianneschi, T.M. Suchyna, F. Sachs, G.P. Holland, Biochim. Biophys. Acta. Biomembr. 1861, 151 (2018)

    Article  PubMed  Google Scholar 

  24. J. Diao, D. Ren, J.R. Engstrom, K.H. Lee, Anal. Biochem. 343, 322 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. N. Zanina, S. Haddad, A. Othmane, T. Jouenne, D. Vaudry, M. Souiri, L. Mora, Chem. Pap. 66, 532 (2012)

    Article  CAS  Google Scholar 

  26. J. Raj, G. Herzog, M. Manning, C. Volcke, B.D. MacCraith, S. Ballantyne, M. Thompson, D.W.M. Arrigan, Biosens. Bioelectron. 24, 2654 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. C.G. Liu, T. Zheng, S. Liu, H.Y. Zhang, J. Mol. Struct. 1110, 44 (2016)

    Article  CAS  Google Scholar 

  28. D. Najlaoui, M. Echabaane, A.B. Khélifa, A. Rouis, Optik. 231, 166507 (2021)

  29. L. Yang, X. Ran, L. Cai, Y. Li, H. Zhao, C.P. Li, Biosens. Bioelectron. 83, 347 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. C. Ruan, L. Yang, Y. Li, Anal. Chem. 74, 4814 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. D. Zhu, Z. Bai, H. Ma, L. Tan, H. Pang, X. Wang, Sens. Actuators. B. 309, 127787 (2020)

  32. D.M. Pavlović, K. Nikšić, S. Livazović, I. Brnardić, A. Anžlovar, Talanta 131, 99 (2015)

    Article  Google Scholar 

  33. Y. Yang, K. Yan, J. Zhang, Electrochim. Acta. 228, 28 (2017)

    Article  CAS  Google Scholar 

  34. H. Sangjarusvichai, W. Dungchai, W. Siangproh, O. Chailapakul, Talanta 79, 1036 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. L. Fotouhi, M. Fatollahzadeh, M.M. Heravi, Int. J. Electrochem. Sci. 7, 3919 (2012)

    CAS  Google Scholar 

  36. A.M. Bueno, A.M. Contento, A. Rios, Anal. Methods. 5, 6821 (2013)

    Article  CAS  Google Scholar 

  37. I.J.D. Priscillal, A.A. Alothman, S.-F. Wang, R. Arumugam, Microchim. Acta. 188, 313 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Najlaoui.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The author Arbia Ben Khelifa has just one affiliation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 274 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najlaoui, D., Echabaane, M., Khelifa, A.B. et al. Morphological, Opto-Electrochemical, and Sensing Proprieties of a Mixed Isopolymolybdate [Eu(dmso)8][Eu(η2-NO3)2(dmso)4(α-Mo8O26)0.5][Mo6O19] for Sulfaguanidine Detection. Electrocatalysis 13, 502–510 (2022). https://doi.org/10.1007/s12678-022-00723-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00723-9

Keywords

Navigation