Skip to main content

Advertisement

Log in

Graphitic Carbon Materials with Various Nanostructures Decorated with Fe-N-C Catalytically Active Sites for Air Electrodes

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Active and stable bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are required for the air electrode of rechargeable metal-air batteries. A promising catalyst could be a carbonaceous material containing transition metal ions coordinated by nitrogen and embedded in the carbon surface (metal-N–C site) as the catalytically active site, although sufficient activity and stability in such materials have not yet been attained. In this study, a systematic investigation of the effects of nanostructures on bifunctional catalytic activity was carried out to gain insight into the activity enhancement. A series of graphitic carbon materials with various concave and convex nanostructures were used as a substrate, which is advantageous for forming stable catalysts. The graphitic carbon surface was covered with a carbonaceous thin film containing the Fe–N-C site, which was prepared by iron phthalocyanine sublimation, deposition on the substrate, and decomposition. Distinct dependence of the ORR and OER activities on the nanostructures was observed. The dependence was explained by the surface Fe concentration and specific surface area, and the correlation between the OER and the concave structure was also suggested. The charge–discharge and cycling performances of a zinc-air battery with an air electrode prepared from the Fe–N-C-decorated graphitic carbon material were also tested to confirm the bifunctionality. Our study provides a useful guideline for developing active and stable bifunctional catalysts from the viewpoint of the catalyst nanostructure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Fu, R. Liang, G. Liu, A. Yu, Z. Bai, L. Yang, Z. Chen, Recent progress in electrically rechargeable zinc–air batteries. Adv. Mater. 31, 1805230 (2019). https://doi.org/10.1002/adma.201805230

    Article  CAS  Google Scholar 

  2. X. Li, Y. Tang, H. Lv, W. Wang, F. Mo, G. Liang, C. Zhi, H. Li, Recent advances in flexible aqueous zinc-based rechargeable batteries. Nanoscale 11, 17992 (2019). https://doi.org/10.1039/C9NR06721C

    Article  CAS  PubMed  Google Scholar 

  3. X. Chen, Z. Zhou, H.E. Karahan, Q. Shao, L. Wei, Y. Chen, Recent advances in materials and design of electrochemically rechargeable zinc–air batteries. Small 14, 1801929 (2018). https://doi.org/10.1002/smll.201801929

    Article  CAS  Google Scholar 

  4. X. Cai, L. Lai, J. Lin, Z. Shen, Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design. Mater. Horiz. 4, 945 (2017). https://doi.org/10.1039/C7MH00358G

    Article  CAS  Google Scholar 

  5. K. Kinoshita, Electrochemical oxygen technology (John Wiley & Sons, New York, 1992)

    Google Scholar 

  6. D.U. Lee, P. Xu, Z.P. Cano, A.G. Kashkooli, M.G. Park, Z. Chen, Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. J. Mater. Chem. A 4, 7107 (2016). https://doi.org/10.1039/C6TA00173D

    Article  CAS  Google Scholar 

  7. C. Han, W. Li, H. Liu, S. Dou, J. Wang, Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Mater. Horiz. 6, 1812 (2019). https://doi.org/10.1039/C9MH00502A

    Article  CAS  Google Scholar 

  8. A.J. Appleby, G. Crepy, G. Feuillade, Materials for carbon-based primary and secondary air electrodes, in Power Sources, vol. 6, ed. by D.H. Collins (Academic Press, London, 1977), pp. 549–568

    Google Scholar 

  9. G. Duperray, G. Marcellin, B. Pichon, Recent advances in secondary zinc-air batteries, in Power Sources, vol. 8, ed. by B.J. Thompson (Academic Press, London, 1981), pp. 489–511

    Google Scholar 

  10. G. Fu, Y. Tang, J. Lee, Recent advances in carbon-based bifunctional oxygen electrocatalysts for Zn−air batteries. ChemElectroChem 5, 1424 (2018). https://doi.org/10.1002/celc.201800373

    Article  CAS  Google Scholar 

  11. M. Shao, Q. Chang, J. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594 (2016). https://doi.org/10.1021/acs.chemrev.5b00462

    Article  CAS  PubMed  Google Scholar 

  12. H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A.I. Kirkland, X. Duan, Y. Huang, General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63 (2018). https://doi.org/10.1038/s41929-017-0008-y

    Article  CAS  Google Scholar 

  13. J. Wang, F. Ciucci, Boosting bifunctional oxygen electrolysis for N-doped carbon via bimetal addition. Small 13, 1604103 (2017). https://doi.org/10.1002/smll.201604103

    Article  CAS  Google Scholar 

  14. J. Maruyama, S. Maruyama, T. Fukuhara, Y. Takao, K. Miyazaki, Nanoscopic combination of edge and flat planes in the active site for oxygen reduction and evolution. Eur. J. Inorg. Chem. 2019, 4117 (2019). https://doi.org/10.1002/ejic.201900761

    Article  CAS  Google Scholar 

  15. J. Maruyama, S. Maruyama, T. Fukuhara, K. Hanafusa, Efficient edge plane exposure on graphitic carbon fiber for enhanced flow-battery reactions. J. Phys. Chem. C 121, 24425 (2017). https://doi.org/10.1021/acs.jpcc.7b07961

    Article  CAS  Google Scholar 

  16. J. Maruyama, T. Amano, S. Inoue, Y. Muramatsu, N. Yoshizawa, E.M. Gullikson, A carbonaceous two-dimensional lattice with FeN4 units. Chem. Commun. 54, 8995 (2018). https://doi.org/10.1039/C8CC04424D

    Article  CAS  Google Scholar 

  17. M. Lefèvre, J.P. Dodelet, P. Bertrand, Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J. Phys. Chem. B 106, 8705 (2002). https://doi.org/10.1021/jp020267f

    Article  CAS  Google Scholar 

  18. Y. Wang, D. Adekoya, J. Sun, T. Tang, H. Qiu, L. Xu, S. Zhang, Y. Hou, Manipulation of edge-site Fe–N2 moiety on holey Fe, N codoped graphene to promote the cycle stability and rate capacity of Li–S batteries. Adv. Funct. Mater. 29, 1807485 (2019). https://doi.org/10.1002/adfm.201807485

    Article  CAS  Google Scholar 

  19. J. Maruyama, S. Maruyama, T. Fukuhara, H. Mizuhata, S. Takenaka, A. Yoshida, K. Miyazaki, Bifunctional oxygen electrodes with highly step-enriched surface of Fe–Nx containing carbonaceous thin film. J. Electrochem. Soc. 167, 060504 (2020). https://doi.org/10.1149/1945-7111/ab7e86

    Article  CAS  Google Scholar 

  20. J. Maruyama, K. Sumino, M. Kawaguchi, I. Abe, Influence of activated carbon pore structure on oxygen reduction at catalyst layers supported on rotating disk electrodes. Carbon 42, 3115 (2004). https://doi.org/10.1016/j.carbon.2004.07.023

    Article  CAS  Google Scholar 

  21. J. Maruyama, T. Hasegawa, S. Iwasaki, H. Kanda, H. Kishimoto, Heat treatment of carbonized hemoglobin with ammonia for enhancement of pore development and oxygen reduction activity. ACS Sustainable Chem. Eng. 2, 493 (2014). https://doi.org/10.1021/sc400402y

    Article  CAS  Google Scholar 

  22. V. Armel, S. Hindocha, F. Salles, S. Bennett, D. Jones, F. Jaouen, Structural descriptors of zeolitic–imidazolate frameworks are keys to the activity of Fe–N–C catalysts. J. Am. Chem. Soc. 139, 453 (2017). https://doi.org/10.1021/jacs.6b11248

    Article  CAS  PubMed  Google Scholar 

  23. S. Kubo, A. Endo, S. Yamazaki, Coral-like hierarchical carbon nanoarchitectures loaded with Rh- and Co-porphyrins as high-efficiency electrodes: effect of pore morphology on CO oxidation and oxygen reduction performance. J. Mater. Chem. A 6, 20044 (2018). https://doi.org/10.1039/C8TA05897K

    Article  CAS  Google Scholar 

  24. M. Iqbal, Y. Bando, Z. Sun, K.C. Wu, A.E. Rowan, J. Na, B.Y. Guan, Y. Yamauchi, In search of excellence: convex versus concave noble metal nanostructures for electrocatalytic applications. Adv. Mater. 33, 2004554 (2021). https://doi.org/10.1002/adma.202004554

    Article  CAS  Google Scholar 

  25. J. Yang, J. Tao, T. Isomura, H. Yanagi, I. Moriguchi, N. Nakashima, A comparative study of iron phthalocyanine electrocatalysts supported on different nanocarbons for oxygen reduction reaction. Carbon 145, 565 (2019). https://doi.org/10.1016/j.carbon.2019.01.022

    Article  CAS  Google Scholar 

  26. C. Domínguez, F.J. Pérez-Alonso, M.A. Salam, S.A. Al-Thabaiti, M.A. Peña, F.J. García-García, L. Barrioa, S. Rojas, Repercussion of the carbon matrix for the activity and stability of Fe/N/C electrocatalysts for the oxygen reduction reaction. Appl. Catal. B 183, 185 (2016). https://doi.org/10.1016/j.apcatb.2015.10.043

    Article  CAS  Google Scholar 

  27. J. Maruyama, S. Maruyama, T. Fukuhara, K. Chashiro, H. Uyama, Ordered mesoporous structure by graphitized carbon nanowall assembly. Carbon 126, 452 (2018). https://doi.org/10.1016/j.carbon.2017.10.029

    Article  CAS  Google Scholar 

  28. J. Maruyama, T. Hasegawa, S. Iwasaki, T. Fukuhara, Y. Orikasa, Y. Uchimoto, Catalysis of vanadium ion redox reactions on carbonaceous material with Metal–N4 sites. ChemCatChem 7, 2305 (2015). https://doi.org/10.1002/cctc.201500362

    Article  CAS  Google Scholar 

  29. M. Kawaguchi, T. Yamanaka, Y. Hayashi, H. Oda, Preparation and capacitive properties of a carbonaceous material containing nitrogen. J. Electrochem. Soc. 157, A35 (2010). https://doi.org/10.1149/1.3251293

    Article  CAS  Google Scholar 

  30. Y. Liu, J. Bao, Z. Li, L. Zhang, S. Zhang, L. Wang, X. Niu, P. Sun, L. Xu, Large-scale defect-rich iron/nitrogen co-doped graphene-based materials as the excellent bifunctional electrocatalyst for liquid and flexible all-solid-state zinc-air batteries. J. Colloid Interface Sci. 607, 1201 (2022). https://doi.org/10.1016/j.jcis.2021.09.070

    Article  CAS  PubMed  Google Scholar 

  31. L. Gao, X. Gao, P. Jiang, C. Zhang, H. Guo, Y. Cheng, Atomically dispersed iron with densely exposed active sites as bifunctional oxygen catalysts for zinc–air flow batteries. Small 2105892 (2021). https://doi.org/10.1002/smll.202105892

  32. G. Li, J. Yang, Y. Chen, M. Liu, X. Guo, G. Chen, B. Chang, T. Wu, X. Wang, Design and facile synthesis of highly efficient and durable bifunctional oxygen electrocatalyst Fe−Nx/C nanocages for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 13, 54032 (2021). https://doi.org/10.1021/acsami.1c17151

    Article  CAS  PubMed  Google Scholar 

  33. V. Jose, H. Hu, E. Edison, W. Manalastas Jr., H. Ren, P. Kidkhunthod, S. Sreejith, A. Jayakumar, J.M.V. Nsanzimana, M. Srinivasan, J. Choi, J.-M. Lee, Modulation of single atomic Co and Fe sites on hollow carbon nanospheres as oxygen electrodes for rechargeable Zn–air batteries. Small Methods 2000751 (2020). https://doi.org/10.1002/smtd.202000751

  34. M. Ma, A. Kumard, D. Wang, Y. Wang, Y. Jia, Y. Zhang, G. Zhang, Z. Yan, X. Sun, Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl. Catal. B 274, 119091 (2020). https://doi.org/10.1016/j.apcatb.2020.119091

    Article  CAS  Google Scholar 

  35. C. Yang, C. Shu, Z. Gan, C. Lai, J. Ma, W. Tang, Y. Wu, Thiocyanate ion ligand-induced atomically dispersed Fe−N−S tridoped hollow catalyst for high-performance zinc−air rechargeable batteries. Energy Fuels 34, 11620 (2020). https://doi.org/10.1021/acs.energyfuels.0c02512

    Article  CAS  Google Scholar 

  36. C. Chen, Y. Li, D. Cheng, H. He, K. Zhou, Graphite nanoarrays-confined Fe and Co single-atoms within graphene sponges as bifunctional oxygen electrocatalyst for ultralong lasting zinc-air battery. ACS Appl. Mater. Interfaces 12, 40415 (2020). https://doi.org/10.1021/acsami.0c12801

    Article  CAS  PubMed  Google Scholar 

  37. C. Li, E. Zhou, Z. Yu, H. Liu, M. Xiong, Tailor-made open porous 2D CoFe/SN-carbon with slightly weakened adsorption strength of ORR/OER intermediates as remarkable electrocatalysts toward zinc-air batteries. Appl. Catal. B 269, 118771 (2020). https://doi.org/10.1016/j.apcatb.2020.118771

    Article  CAS  Google Scholar 

  38. Z. Guan, X. Zhang, J. Fang, X. Wang, W. Zhu, Z. Zhuang, Fe, Ni, S, N-doped carbon materials as highly active bi-functional catalysts for rechargeable zinc-air battery. Mater. Lett. 258, 126826 (2020). https://doi.org/10.1016/j.matlet.2019.126826

    Article  CAS  Google Scholar 

Download references

Funding

This study was partly supported by Grants-In-Aid for Scientific Research (KAKENHI; grant no. 18K04870) of the Japan Society for the Promotion of Science. XAFS studies were performed with the approval of SPring-8 (Proposal No. 2018B1775).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Maruyama.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruyama, J., Nakajima, D., Maruyama, S. et al. Graphitic Carbon Materials with Various Nanostructures Decorated with Fe-N-C Catalytically Active Sites for Air Electrodes. Electrocatalysis 13, 219–229 (2022). https://doi.org/10.1007/s12678-022-00716-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00716-8

Keywords

Navigation