Skip to main content

Advertisement

Log in

Decreasing the Overpotential for Formate Production in Electrochemical CO2 Reduction Achieved by Anodized Sn Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The Sn electrode possesses a high selectivity for formate production in electrochemical CO2 reduction. Understanding the relationship between the selectivity of formate and surface characteristics such as structure and chemical state is important for obtaining high activity. In this study, we fabricated a porous Sn electrode using a simple method of anodization in lactic acid. The anodized electrode had numerous 1-μm pores and its surface chemical state had a relatively high ratio of Sn0 compared with that of a bare Sn electrode. In the CO2 reduction reaction, the anodized Sn electrode showed a Faradaic efficiency (FE) of 35% for formate production at a low applied potential of −0.6 V vs. a reversible hydrogen electrode (RHE), with suppressed H2 generation. A Tafel analysis revealed that the slope of the anodized Sn electrode was 70 mV/decade, suggesting an increase in the stability of the CO2 radical anion. These results indicated that a coordinative unsaturation site such as the edge site formed by anodization contributes to a decrease in the overpotential and an increase in the reactive sites for formate production. Moreover, the surface structure appeared to be a significant factor in the production of formate at a very low applied potential relative to the surface oxidation state.

Textual abstract

The porous Sn electrode was prepared by anodization in lactic acid to increase the selectivity for formate at a low applied potential. Prepared porous Sn electrode enhances formate production from the CO2RR at a low applied potential due to the stabilization of the CO2 or its reaction intermediates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.A. Quadrelli, G. Centi, J.-L. Duplan, S. Perathoner, Carbon dioxide recycling: emerging large-scale technologies with industrial potential. Chemsuschem 4, 1194 (2011)

    Article  CAS  Google Scholar 

  2. M. Peters, B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T.E. Müller, Chemical technologies for exploiting and recycling carbon dioxide into the value chain. Chemsuschem 4, 1216 (2011)

    Article  CAS  Google Scholar 

  3. G.A. Olah, G.K.S. Prakash, A. Goeppert, Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 133, 12881 (2011)

    Article  CAS  Google Scholar 

  4. D.T. Whipple, P.J.A. Kenis, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451 (2010)

    Article  CAS  Google Scholar 

  5. K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107 (2014)

    Article  CAS  Google Scholar 

  6. J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram, K.P. Kuhl, C. Hahn, J.K. Nørskov, T.F. Jaramillo, Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822 (2017)

    Article  CAS  Google Scholar 

  7. F. Calle-Vallejo, M.T.M. Koper, A.S. Bandarenka, Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chem. Soc. Rev. 42, 5210 (2013)

    Article  CAS  Google Scholar 

  8. H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda, K. Ito, S. Ideka, Y. Oda, K. Imai, M. Maeda, I. Kaname, Electrochemical reduction of carbon dioxide at various metal electodes in aqueous potassium hydrogen carbonate solution. Bull. Chem. Soc. Jpn. 63, 2459 (1990)

    Article  CAS  Google Scholar 

  9. C. Zhao, J. Wang, Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts Chem. Eng. J. 293, 161 (2016)

    CAS  Google Scholar 

  10. A. Dutta, C.E. Morstein, M. Rahaman, A. Cedeno López, and P. Broekmann, Beyond copper in CO2 electrolysis: effective hydrocarbon production on silver-nanofoam catalysts. ACS Catal. 8, 8357 (2018)

  11. Y.-C. Hsieh, S.D. Senanayake, Y. Zhang, W. Xu, D.E. Polyansky, Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal. 5, 5349 (2015)

    Article  CAS  Google Scholar 

  12. M. Morimoto, Y. Takatsuji, K. Hirata, T. Fukuma, T. Ohno, T. Sakakura, T. Haruyama, Visualization of catalytic edge reactivity in electrochemical CO2 reduction on porous Zn electrode. Electrochim. Acta 290, 255 (2018)

    Article  CAS  Google Scholar 

  13. Y. Peng, T. Wu, L. Sun, J.M.V. Nsanzimana, A.C. Fisher, X. Wang, Selective electrochemical reduction of CO2 to ethylene on nanopores-modified copper electrodes in aqueous solution. ACS Appl. Mater. Interfaces 9, 32782 (2017)

    Article  CAS  Google Scholar 

  14. A. Dutta, M. Rahaman, M. Mohos, A. Zanetti, P. Broekmann, Electrochemical CO2 conversion using skeleton (sponge) type of Cu catalysts. ACS Catal. 7, 5431 (2017)

    Article  CAS  Google Scholar 

  15. P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M.B. Ross, O.S. Bushuyev, P. Todorović, T. Regier, S.O. Kelley, P. Yang, E.H. Sargent, Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103 (2018)

    Article  Google Scholar 

  16. H.S. Jeon, S. Kunze, F. Scholten, and B. Roldan Cuenya, Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal. 8, 531 (2018)

  17. A. Dutta, M. Rahaman, N.C. Luedi, M. Mohos, P. Broekmann, Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 6, 3804 (2016)

    Article  CAS  Google Scholar 

  18. B. Qin, H. Wang, F. Peng, H. Yu, and Y. Cao, Effect of the surface roughness of copper substrate on three-dimensional tin electrode for electrochemical reduction of CO2 into HCOOH. J. CO2 Util. 21, 219 (2017)

  19. D. Li, J. Wu, T. Liu, J. Liu, Z. Yan, L. Zhen, and Y. Feng, Tuning the pore structure of porous tin foam electrodes for enhanced electrochemical reduction of carbon dioxide to formate. Chem. Eng. J. 375, 122024 (2019)

  20. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833 (1994)

    Article  CAS  Google Scholar 

  21. J.S. Yoo, R. Christensen, T. Vegge, J.K. Nørskov, F. Studt, Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. Chemsuschem 9, 358 (2016)

    Article  CAS  Google Scholar 

  22. Y. Chen, M.W. Kanan, Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986 (2012)

    Article  CAS  Google Scholar 

  23. M.F. Baruch, J.E. Pander, J.L. White, A.B. Bocarsly, Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5, 3148 (2015)

    Article  CAS  Google Scholar 

  24. X. An, S. Li, A. Yoshida, Z. Wang, X. Hao, A. Abudula, G. Guan, Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH. ACS Sustain. Chem. Eng. 7, 9360 (2019)

    Article  CAS  Google Scholar 

  25. M. Morimoto, Y. Takatsuji, R. Yamasaki, H. Hashimoto, I. Nakata, T. Sakakura, T. Haruyama, Electrodeposited Cu-Sn alloy for electrochemical CO2 reduction to CO/HCOO. Electrocatalysis 9, 323 (2018)

    Article  CAS  Google Scholar 

  26. Y. Takatsuji, I. Nakata, M. Morimoto, T. Sakakura, R. Yamasaki, T. Haruyama, Highly selective methane production through electrochemical CO2 reduction by electrolytically plated Cu-Co electrode. Electrocatalysis 10, 29 (2019)

    Article  CAS  Google Scholar 

  27. M. Morimoto, Y. Takatsuji, S. Iikubo, S. Kawano, T. Sakakura, T. Haruyama, Experimental and theoretical elucidation of electrochemical CO2 reduction on an electrodeposited Cu3Sn alloy. J. Phys. Chem. C 123, 3004 (2019)

    Article  CAS  Google Scholar 

  28. S. Back, M.S. Yeom, and Y. Jung, Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction. to CO ACS Catal. 5, 5089 (2015)

  29. T. Saberi Safaei, A. Mepham, X. Zheng, Y. Pang, C.T. Dinh, M. Liu, D. Sinton, S.O. Kelley, and E.H. Sargent, High-density nanosharp microstructures enable efficient CO2 electroreduction. Nano. Lett. 16, 7224 (2016)

  30. T.T.H. Hoang, S. Ma, J.I. Gold, P.J.A. Kenis, A.A. Gewirth, Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 7, 3313 (2017)

    Article  CAS  Google Scholar 

  31. Y. Chen, C.W. Li, M.W. Kanan, Aqueous CO2 reduction at very low overpotential on oxide-derived au nanoparticles. J. Am. Chem. Soc. 134, 19969 (2012)

    Article  CAS  Google Scholar 

  32. D.H. Won, C.H. Choi, J. Chung, M.W. Chung, E.-H. Kim, S.I. Woo, Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. Chemsuschem 8, 3092 (2015)

    Article  CAS  Google Scholar 

  33. L. Fan, Z. Xia, M. Xu, Y. Lu, Z. Li, 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products. Adv. Funct. Mater. 28, 1706289 (2018)

    Article  Google Scholar 

  34. S. Lee, J.D. Ocon, Y. Il Son, and J. Lee, Alkaline CO2 electrolysis toward selective and continuous HCOO- production over SnO2 nanocatalysts. J. Phys. Chem. C 119, 4884 (2015)

  35. R. Daiyan, X. Lu, Y.H. Ng, R. Amal, Surface engineered tin foil for electrocatalytic reduction of carbon dioxide to formate. Catal. Sci. Technol. 7, 2542 (2017)

    Article  CAS  Google Scholar 

  36. B.K. Körbahti and K.M. Turan, Evaluation of energy consumption in electrochemical oxidation of acid violet 7 textile dye using Pt/Ir electrodes. J. Turkish Chem. Soc. Sect. A Chem. 3, 75 (2016)

Download references

Funding

This work was partially supported by a Grant-in-Aid for Early-Career Scientist (Grant Number 18K14324).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshiyuki Takatsuji or Tetsuya Haruyama.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 247 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimoto, M., Fujita, N., Takatsuji, Y. et al. Decreasing the Overpotential for Formate Production in Electrochemical CO2 Reduction Achieved by Anodized Sn Electrode. Electrocatalysis 13, 72–80 (2022). https://doi.org/10.1007/s12678-021-00695-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00695-2

Keywords

Navigation