Skip to main content

Advertisement

Log in

Chromium Oxynitride (CrON) Nanoparticles: an Unexplored Electrocatalyst for Oxygen Evolution Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Development of stable and efficient non-noble metal-based catalysts for oxygen evolution reactions (OERs) continues to pose a significant challenge owing to sluggish reaction kinetics (since it commonly involves four electron processes and O–O bond formation). Transition metal nitrides and oxynitrides are of particular interest in energy conversion and storage technologies due to its unique properties like metallic conductivity, wettability, durability, and chemical stability. However, chromium oxynitride is less explored as a catalyst for OER. In this work, we report chromium oxynitride (CrON) nanoparticles with spherical morphology, which are tested for electrocatalytic OER activity for the first time. The study is also conducted with its corresponding nitride (chromium nitride (CrN)) and oxide phase (chromium oxide (Cr2O3)) to benchmark the OER performance of the oxynitride. CrON nanoparticles show superior OER electrocatalytic properties over its corresponding nitride (CrN) and oxide (Cr2O3) material. CrON nanoparticles exhibit an overpotential of 409 mV at a current density of 10 mA cm−2, with a Tafel slope of 157 mV dec−1, and offers good stability for over 12h in alkaline medium. These values are lower than that of CrN (overpotential of 446 mV at 10 mA cm−2, and Tafel slope of 162 mV dec−1), and Cr2O3 (overpotential 477 mV and Tafel slope 210 mV dec−1).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Saad, H. Shen, Z. Cheng, R. Arbi, B. Guo, L.S. Hui, K. Liang, S. Liu, J.P. Attfield, A. Turak, J. Wang, M. Yang, Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano. Micro. Lett. 12, 79 (2020). https://doi.org/10.1007/s40820-020-0412-8

    Article  CAS  Google Scholar 

  2. W. Wang, O. Savadogo, Z.F. Ma, Preparation of new titanium oxy nitride based electro catalysts using an anhydrous sol-gel method for water electrolysis in acid medium. Int. J. Hydrogen. Energy. 37, 7405–7417 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.025

    Article  CAS  Google Scholar 

  3. N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9, 12231–12247 (2017). https://doi.org/10.1039/C7NR04187J

    Article  CAS  PubMed  Google Scholar 

  4. K. Liu, C. Zhang, Y. Sun, G. Zhang, X. Shen, F. Zou, H. Zhang, Z. Wu, E.C. Wegener, C.J. Taubert, J.T. Miller, Z. Peng, Y. Zhu, High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano 12, 158–167 (2018). https://doi.org/10.1021/acsnano.7b04646

    Article  CAS  PubMed  Google Scholar 

  5. L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H.Y. Hwang, J.K. Norskov, T.F. Jaramillo, A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050

    Article  CAS  PubMed  Google Scholar 

  6. Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015). https://doi.org/10.1039/c4cs00470a

    Article  CAS  PubMed  Google Scholar 

  7. J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science. 345, 1593–1596 (2014). https://doi.org/10.1126/science.1258307.

  8. B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F.P.G. De Arquer, C.T. Dinh, F. Fan, M. Yuan, E. Yassitepe, N. Chen, T. Regier, P. Liu, Y. Li, P. De Luna, A. Janmohamed, H.L. Xin, H. Yang, A. Vojvodic, E.H. Sargent, Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016). https://doi.org/10.1126/science.aaf1525

    Article  CAS  PubMed  Google Scholar 

  9. L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012). https://doi.org/10.1021/ja307507a

    Article  CAS  PubMed  Google Scholar 

  10. H. Liu, Y. Wang, X. Lu, Y. Hu, G. Zhu, R. Chen, L. Ma, H. Zhu, Z. Tie, J. Liu, Z. Jin, The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy 35, 350–357 (2017). https://doi.org/10.1016/j.nanoen.2017.04.011

    Article  CAS  Google Scholar 

  11. E. Umeshbabu, P. Hari Krishna Charan, P. Justin, G. Ranga Rao, Hierarchically organized NiCo2O4 microflowers anchored on multiwalled carbon nanotubes: efficient bifunctional electrocatalysts for oxygen and hydrogen evolution reactions. Chempluschem. 85, 183–194 (2020). https://doi.org/10.1002/cplu.201900603.

  12. Y. Li, J. Yin, L. An, M. Lu, K. Sun, Y.-Q. Zhao, D. Gao, F. Cheng, P. Xi, FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 14, 1801070 (2018). https://doi.org/10.1002/smll.201801070

    Article  CAS  Google Scholar 

  13. F. Song, W. Li, J. Yang, G. Han, P. Liao, Y. Sun, Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 9, 4531 (2018). https://doi.org/10.1038/s41467-018-06728-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. W. Liu, Y. Hou, Z. Lin, S. Yang, C. Yu, C. Lei, X. Wu, D. He, Q. Jia, G. Zheng, X. Zhang, L. Lei, Porous cobalt oxynitride nanosheets for efficient electrocatalytic water oxidation. Chem. Sus. Chem. 11, 1479–1485 (2018). https://doi.org/10.1002/cssc.201800380

    Article  CAS  Google Scholar 

  15. Z. Fang, L. Peng, H. Lv, Y. Zhu, C. Yan, S. Wang, P. Kalyani, X. Wu, G. Yu, Metallic transition metal selenide holey nanosheets for efficient oxygen evolution electrocatalysis. ACS Nano 11, 9550–9557 (2017). https://doi.org/10.1021/acsnano.7b05481

    Article  CAS  PubMed  Google Scholar 

  16. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). https://doi.org/10.1126/science.1212858

    Article  CAS  Google Scholar 

  17. J. Yu, G. Cheng, W. Luo, Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A. 5, 11229–11235 (2017). https://doi.org/10.1039/c7ta02968c

    Article  CAS  Google Scholar 

  18. M. Pramanik, S. Tominaka, Z.-L. Wang, T. Takei, Y. Yamauchi, Mesoporous semimetallic conductors: structural and electronic properties of cobalt phosphide systems. Angew. Chemie Int. Ed. 56, 13508–13512 (2017). https://doi.org/10.1002/anie.201707878

    Article  CAS  Google Scholar 

  19. A. Saad, Z. Cheng, X. Zhang, S. Liu, H. Shen, T. Thomas, J. Wang, M. Yang, Ordered mesoporous cobalt–nickel nitride prepared by nanocasting for oxygen evolution reaction electrocatalysis. Adv. Mater. Interfaces. 6, 1–8 (2019). https://doi.org/10.1002/admi.201900960

    Article  CAS  Google Scholar 

  20. Y. Yuan, Y. Zhou, H. Shen, S.A. Rasaki, T. Thomas, J. Wang, C. Wang, J. Wang, M. Yang, Holey sheets of interconnected carbon-coated nickel nitride nanoparticles as highly active and durable oxygen evolution electrocatalysts. ACS. Appl. Energy. Mater. 1, 6774–6780 (2018). https://doi.org/10.1021/acsaem.8b01855

    Article  CAS  Google Scholar 

  21. K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, Y. Xie, Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 137, 4119–4125 (2015). https://doi.org/10.1021/ja5119495

    Article  CAS  PubMed  Google Scholar 

  22. P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, Y. Xie, Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chemie. Int. Ed. 54, 14710–14714 (2015). https://doi.org/10.1002/anie.201506480

    Article  CAS  Google Scholar 

  23. Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R.S. Rawat, H.J. Fan, Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew. Chemie. Int. Ed. 55, 8670–8674 (2016). https://doi.org/10.1002/anie.201604372

    Article  CAS  Google Scholar 

  24. Y. Wang, C. Xie, D. Liu, X. Huang, J. Huo, S. Wang, Nanoparticle-stacked porous nickel-iron nitride nanosheet: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS. Appl. Mater. Interfaces. 8, 18652–18657 (2016). https://doi.org/10.1021/acsami.6b05811

    Article  CAS  PubMed  Google Scholar 

  25. L. Han, K. Feng, Z. Chen, Self-supported cobalt nickel nitride nanowires electrode for overall electrochemical water splitting. Energy. Technol. 5, 1908–1911 (2017). https://doi.org/10.1002/ente.201700108

    Article  CAS  Google Scholar 

  26. Y. Wang, B. Zhang, W. Pan, H. Ma, J. Zhang, 3 D porous nickel–cobalt nitrides supported on nickel foam as efficient electrocatalysts for overall water splitting. Chem. Sus. Chem. 10, 4170–4177 (2017). https://doi.org/10.1002/cssc.201701456

    Article  CAS  Google Scholar 

  27. A. Fuertes, Synthetic approaches in oxynitride chemistry. Prog. Solid. State. Chem. 51, 63–70 (2018). https://doi.org/10.1016/j.progsolidstchem.2017.11.001

    Article  CAS  Google Scholar 

  28. A. Fuertes, Metal oxynitrides as emerging materials with photocatalytic and electronic properties. Mater. Horizons. 2, 453–461 (2015). https://doi.org/10.1039/c5mh00046g

    Article  CAS  Google Scholar 

  29. R. Chen, H.Y. Wang, J. Miao, H. Yang, B. Liu, A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires. Nano Energy 11, 333–340 (2015). https://doi.org/10.1016/j.nanoen.2014.11.021

    Article  CAS  Google Scholar 

  30. U.N. Kumar, J.N. Ramavath, S. Ghosh, R. Kothandaraman, T. Thomas, Chromium oxynitride as durable electrode material for symmetric supercapacitors. Batter. Supercaps. 3, 780–788 (2020). https://doi.org/10.1002/batt.201900225

    Article  CAS  Google Scholar 

  31. C. Giordano, C. Erpen, W. Yao, B. Milke, M. Antonietti, Metal nitride and metal carbide nanoparticles by a soft urea pathway. Chem. Mater. 21, 5136–5144 (2009). https://doi.org/10.1021/cm9018953

    Article  CAS  Google Scholar 

  32. Y. Yao, Q. Feng, S. Zhu, J. Li, Y. Yao, Y. Wang, Q. Wang, M. Gu, H. Wang, H. Li, X. Yuan, M. Shao, Chromium oxynitride electrocatalysts for electrochemical synthesis of ammonia under ambient conditions. 3, 1800324 (2018). https://doi.org/10.1002/smtd.201800324

    Article  CAS  Google Scholar 

  33. Y. Yuan, B. Zhang, J. Sun, P. Jonnard, K. Le Guen, Y. Tu, C. Yan, R. Lan, Structure and optical properties of CrOxNy films with composition modulation. Surf. Eng. 36, 411–417 (2020). https://doi.org/10.1080/02670844.2019.1656356

    Article  CAS  Google Scholar 

  34. J. Xiao, N. Xiao, C. Liu, H. Li, X. Pan, X. Zhang, J. Bai, Z. Guo, X. Ma, J. Qiu, In situ growing chromium oxynitride nanoparticles on carbon nanofibers to stabilize lithium deposition for lithium metal anodes. Small 16, 1–10 (2020). https://doi.org/10.1002/smll.202003827

    Article  CAS  Google Scholar 

  35. A. Lippitz, T. Hübert, XPS investigations of chromium nitride thin films. Surf. Coatings Technol. 200, 250–253 (2005). https://doi.org/10.1016/j.surfcoat.2005.02.091

    Article  CAS  Google Scholar 

  36. H. Oliveira, Chromium as an environmental pollutant: insights on induced plant toxicity. J. Bot. 2012, 375843 (2012). https://doi.org/10.1155/2012/375843

    Article  CAS  Google Scholar 

  37. V. Maruthapandian, M. Mathankumar, V. Saraswathy, B. Subramanian, S. Muralidharan, Study of the oxygen evolution reaction catalytic behavior of CoxNi1–xFe2O4 in alkaline medium. ACS. Appl. Mater. Interfaces. 9, 13132–13141 (2017). https://doi.org/10.1021/acsami.6b16685

    Article  CAS  PubMed  Google Scholar 

  38. Z. Sun, M. Yuan, H. Yang, L. Lin, H. Jiang, S. Ge, H. Li, G. Sun, S. Ma, X. Yang, 3D Porous amorphous γ-CrOOH on Ni foam as bifunctional electrocatalyst for overall water splitting. Inorg. Chem. 58, 4014–4018 (2019). https://doi.org/10.1021/acs.inorgchem.9b00112

    Article  CAS  PubMed  Google Scholar 

  39. Y. Yuan, S. Adimi, X. Guo, T. Thomas, Y. Zhu, H. Guo, G.S. Priyanga, P. Yoo, J. Wang, J. Chen, P. Liao, J.P. Attfield, M. Yang, A surface-oxide-rich activation layer (SOAL) on Ni2Mo3N for a rapid and durable oxygen evolution reaction. Angew. Chemie. Int. Ed. 59, 18036–18041 (2020). https://doi.org/10.1002/anie.202008116

    Article  CAS  Google Scholar 

  40. Z.-J. Chen, T. Zhang, X.-Y. Gao, Y.-J. Huang, X.-H. Qin, Y.-F. Wang, K. Zhao, X. Peng, C. Zhang, L. Liu, M.-H. Zeng, H.-B. Yu, Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution. Adv. Mater. 33, 2101845 (2021). https://doi.org/10.1002/adma.202101845.

  41. X. Bo, R.K. Hocking, S. Zhou, Y. Li, X. Chen, J. Zhuang, Y. Du, C. Zhao, Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction. Energy. Environ. Sci. 13, 4225–4237 (2020). https://doi.org/10.1039/D0EE01609H

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors also acknowledge Department of Metallurgical and Materials Engineering for the measurement facilities and Prof. T Pradeep from Department of Chemistry, IITM, for the XPS measurements.

Funding

U. Naveen Kumar received the HTRA fellowship from IIT Madras. The Department of Science and Technology, Government of India, provided support through the project no (DST/TMD/SERI/HUB/1(C)), (DST/TMD/MES/2K18/17), DST WTI initiative, and Indo Hungary co-research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiju Thomas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

U. Naveen Kumar and Abdul Malek have contributed equally.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4450 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U.N., Malek, A., Rao, G.R. et al. Chromium Oxynitride (CrON) Nanoparticles: an Unexplored Electrocatalyst for Oxygen Evolution Reaction. Electrocatalysis 13, 62–71 (2022). https://doi.org/10.1007/s12678-021-00693-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00693-4

Keywords

Navigation