Skip to main content
Log in

Technical–Economic Analysis of Hydrogen Peroxide Activation by a Sacrificial Anode: Comparison of Two Exchange Membranes

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Divided electrochemical reactors allow the design of strategies to take advantage of the two reactions of the redox pair involved for wastewater treatment. Nafion membranes are the most used separators in these cells. These membranes have demonstrated high efficiency, but their high costs make the process more expensive. The present work focuses on the evaluation of the technical and economic feasibility of replacing the Nafion 117® membrane with a commercial polymeric membrane used in reverse osmosis (RO) treatments. In this study, a divided electrochemical cell was constructed with electrodes made of galvanized steel. The Fenton reaction was developed in the anode compartment using electrogenerated iron as a catalyst. An experimental design 23 was used to study the influence of three operating parameters (initial H2O2, membrane, voltage) on the H2O2 activation kinetics. The results demonstrated that the activation of H2O2 followed a pseudo-zero-order kinetic. The maximum rate constants obtained for Nafion 117® and RO membrane were 2.76 mM min−1 and 2.45 mM min−1, respectively. The optimization of H2O2 activation process was performed using a response surface methodology, where multiple regression models were used to figure out the best operation conditions when using both membranes. Finally, an extensive cost analysis of the process is included.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. X. Zhang, Y. Ding, H. Tang, X. Han, L. Zhu, N. Wang, Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: efficiency stability and mechanism. Chem. Eng. J. 236, 251–262 (2014). https://doi.org/10.1016/j.cej.2013.09.051

    Article  CAS  Google Scholar 

  2. M. Davoudi, M. Gholami, S. Naseri, A. Hossein Mahvi, M. Farzadkia, A. Esrafili, H. Alidadi, Application of electrochemical reactor divided by cellulosic membrane for optimized simultaneous removal of phenols chromium and ammonia from tannery effluents. Toxicol. Environ. Chem. 96, 1310–1332 (2014). https://doi.org/10.1080/02772248.2014.942311

  3. S. Ellouze, S. Kessemtini, D. Clematis, G. Cerisola, M. Panizza, S. Chaabane Elaoud, Application of Doehlert design to the electro-Fenton treatment of Bismarck Brown Y. J. Electroanal. Chem. 799, 34–39 (2017). https://doi.org/10.1016/j.jelechem.2017.05.042

  4. A. Fernandes, L. Labiadh, L. Ciríaco, M.J. Pacheco, A. Gadri, S. Ammar, A. Lopes, Electro-Fenton oxidation of reverse osmosis concentrate from sanitary landfill leachate: evaluation of operational parameters. Chemosphere. 184, 1223–1229 (2017). https://doi.org/10.1016/j.chemosphere.2017.06.088

    Article  CAS  PubMed  Google Scholar 

  5. S. Rodríguez, D. Lorenzo, A. Santos, A. Romero, Comparison of real wastewater oxidation with Fenton/Fenton-like and persulfate activated by NaOH and Fe(II). J. Environ. Manag. 255, 109926 (2020). https://doi.org/10.1016/j.jenvman.2019.109926

    Article  CAS  Google Scholar 

  6. H. He, Q. Ji, Z. Gao, S. Yang, C. Sun, S. Li, L. Zhang, Degradation of tri(2-chloroisopropyl) phosphate by the UV/H2O2 system: kinetics mechanisms and toxicity evaluation. Chemosphere. 236, 124388 (2019)

  7. Y. Zhang, Y. Xiao, Y. Zhong, T.-T. Lim, Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: reaction kinetics degradation pathways and antibacterial activity. Chem. Eng. J. 372, 420–428 (2019). https://doi.org/10.1016/j.cej.2019.04.160

    Article  CAS  Google Scholar 

  8. J. Wang, H. Chen, Catalytic ozonation for water and wastewater treatment: recent advances and perspective. Sci. Total. Environ. 704, 135249 (2020). https://doi.org/10.1016/j.scitotenv.2019.135249

    Article  CAS  PubMed  Google Scholar 

  9. K.I. Hamid, P.J. Scales, A. Sebastien, J.-P. Croue, S. Muthukumaran, M. Duke, Ozone combined with ceramic membranes for water treatment: impact on HO radical formation and mitigation of bromate. J. Environ. Manage. 253, 109655 (2020). https://doi.org/10.1016/j.jenvman.2019.109655

    Article  CAS  Google Scholar 

  10. L. Labiadh, S. Ammar, A.R. Kamali, Oxidation/mineralization of AO7 by electro-Fenton process using chalcopyrite as the heterogeneous source of iron and copper catalysts with enhanced degradation activity and reusability. J. Electroanal. Chem. 853, 113532 (2019). https://doi.org/10.1016/j.jelechem.2019.113532

    Article  CAS  Google Scholar 

  11. L. Feng, E.A. Serna-Galvis, N. Oturan, S. Giannakis, R.A. Torres-Palma, M.A. Oturan, Evaluation of process influencing factors, degradation products, toxicity evolution and matrix-related effects during electro-Fenton removal of piroxicam from waters. J. Environ. Chem. Eng. 7(5), 103400 (2019). https://doi.org/10.1016/j.jece.2019.103400

    Article  CAS  Google Scholar 

  12. M.G. Lak, M.R. Sabour, E. Ghafari, A. Amiri, Energy consumption and relative efficiency improvement of photo-Fenton – optimization by RSM for landfill leachate treatment a case study. Waste. Manag. 79, 58–70 (2018). https://doi.org/10.1016/j.wasman.2018.07.029

    Article  CAS  Google Scholar 

  13. J-H. Kim, H –K. Lee, Y-J. Park, S-B. Lee, S-J. Choi, W. Oh, H-S. Kim, C–R. Kim, K–C. Kim, B-C. Seo, Studies on decomposition behavior of oxalic acid waste by UVC photo-Fenton advanced oxidation process. Nucl. Eng. Technol. 51(8), 1957–1963 (2019). https://doi.org/10.1016/j.net.2019.06.011

  14. R. Andreozzi, A. D’Apuzzo, R. Marotta, A kinetic model for the degradation of benzothiazole by Fe3+ photo-assisted Fenton process in a completely mixed batch reactor. J. Hazard. Mater. 80(1–3), 241–257 (2000). https://doi.org/10.1016/S0304-3894(00)00308-3

    Article  CAS  PubMed  Google Scholar 

  15. J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ. Sci. Technol. 36(1), 1–84 (2006). https://doi.org/10.1080/10643380500326564

    Article  CAS  Google Scholar 

  16. J. Casado, Towards industrial implementation of electro-Fenton and derived technologies for wastewater treatment: a review. J. Environ. Chem. Eng. 7(1), 102823 (2019). https://doi.org/10.1016/j.jece.2018.102823

    Article  CAS  Google Scholar 

  17. A.A. Najafpoor, M. Davoudi, E.R. Salmani, Decolorization of synthetic textile wastewater using electrochemical cell divided by cellulosic separator. J. Environ. Health. Sci. Eng. 15, 11 (2017). https://doi.org/10.1186/s40201-017-0273-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. comparison of two electrochemical systems, A. Ochoa-Chavez, A. Pieczynska, A. Fiszka Borzyszkowska, P. Espinoza-Montero, E. Siedlecka, Electrochemical degradation of 5-FU using a flow reactor with BDD electrode. Chemosphere. 201, 816–825 (2019). https://doi.org/10.1016/j.chemosphere.2018.03.050

    Article  CAS  Google Scholar 

  19. A.J. Mendez-Martínez, M.M. Dávila-Jiménez, O. Ornelas-Dávila, M.P. Elizalde-González, U. Arroyo-Abad, I. Sirés, E. Brillas, Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells. Electrochim. Acta. 59(1), 140–149 (2012). https://doi.org/10.1016/j.electacta.2011.10.047

    Article  CAS  Google Scholar 

  20. A.Y. Bagastyo, D.J. Batstone, I. Kristiana, B.I. Escher, C. Joll, J. Radjenovic, Electrochemical treatment of reverse osmosis concentrate on boron-doped electrodes in undivided and divided cell configurations. J. Hazard. Mater. 279, 111–116 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.060

    Article  CAS  PubMed  Google Scholar 

  21. B. Ramírez, V. Rondán, L. Ortiz-Hernández, S. Silva-Martínez, A. Alvarez-Gallegos, Semi-empirical chemical model for indirect advanced oxidation of Acid Orange 7 using an unmodified carbon fabric cathode for H2O2 production in an electrochemical reactor. J. Environ. Manage. 171, 29–34 (2016). https://doi.org/10.1016/j.jenvman.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  22. Y.A. Bustos, J.G. Rangel-Peraza, M.N. Rojas-Valencia, E.R. Bandala, A. Álvarez-Gallegos, L. Vargas-Estrada, Treatment of industrial effluents by electrochemical generation of H2O2 using an RVC cathode in a parallel plate reactor. Environ. Technol. 37(7), 815–827 (2016). https://doi.org/10.1080/09593330.2015.1086820

    Article  CAS  PubMed  Google Scholar 

  23. J. Mora-Gómez, M. García-Gabaldón, J. Carrillo-Abad, M. Montañés, S. Mestre, V. Pérez-Herranz, Influence of the reactor configuration and the supporting electrolyte concentration on the electrochemical oxidation of Atenolol using BDD and SnO2 ceramic electrodes. Sep. Purif. Technol. 241, 116684 (2020). https://doi.org/10.1016/j.seppur.2020.116684

    Article  CAS  Google Scholar 

  24. B. Ramírez-Pereda, A.A. Álvarez-Gallegos, S. Silva-Martinez, J.G. Rangel-Peraza, Y.A. Bustos-Terrones, Evaluation of the simultaneous use of two compartments of an electrochemical reactor for the elimination of azo dyes. J. Electroanal. Chem. 855, 113593 (2019). https://doi.org/10.1016/j.jelechem.2019.113593

    Article  CAS  Google Scholar 

  25. V. Rondan, B. Ramírez, S. Silva-Martínez, J. Hernández, M. Kumar Tiwari, A. Alvarez-Gallegos, High removal efficiency of dye pollutants by anodic Fenton treatment. Int. J. Electrochem. Sci. 15, 52–67 (2020). https://doi.org/10.20964/2020.01.21

  26. C. Agarwal, A. Mhatre, A. Goswami, Transport studies of monovalent ions through Nafion-117 ion exchange membrane in presence of polyacrylate. Sep. Sci. Technol. 49(17), 2650–2656 (2015). https://doi.org/10.1080/01496395.2014.940047

    Article  CAS  Google Scholar 

  27. J. Hu, H. Zhang, W. Xu, Z. Yuan, X. Li, Mechanism and transfer behavior of ions in Nafion membranes under alkaline media. J. Membr. Sci. 566(15), 8–14 (2018). https://doi.org/10.1016/j.memsci.2018.08.057

    Article  CAS  Google Scholar 

  28. I. Navarro-Solis, L. Villalba-Almendra, A. Alvarez-Gallegos, H2 production by PEM electrolysis, assisted by textile effluent treatment and a solar photovoltaic cell. Int. J. Hydrog. Energy. 35(20), 10833–10841 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.086

    Article  CAS  Google Scholar 

  29. M.J. Parnian, S. Rowshanzamir, J.A. Moghaddam, Investigation of physicochemical and electrochemical properties of recast Nafion nanocomposite membranes using different loading of zirconia nanoparticles for proton exchange membrane fuel cell applications. Mater. Sci. Technol. 1(2), 146–154 (2018). https://doi.org/10.1016/j.mset.2018.06.008

    Article  Google Scholar 

  30. C. Agarwal, S. Chaudhury, A.G. Pandey, Kinetic aspects of Donnan dialysis through Nafion-117 membrane. J. Membr. Sci. 415, 681–685 (2012). https://doi.org/10.1016/j.memsci.2012.05.049

    Article  CAS  Google Scholar 

  31. S. Sevda, X. Dominguez-Benetton, K. Vanbroekhoven, T. Sreekrishnan, D. Pant, Characterization and comparison of the performance of two different separator types in air–cathode microbial fuel cell treating synthetic wastewater. Chem. Eng. J. 228, 1–11 (2013). https://doi.org/10.1016/j.cej.2013.05.014

    Article  CAS  Google Scholar 

  32. W. Yang, R. Rossi, Y. Tian, K.-Y. Kim, B.E. Logan, Mitigating external and internal cathode fouling using a polymer bonded separator in microbial fuel cells. Bioresour. Technol. 249, 1080–1084 (2018). https://doi.org/10.1016/j.biortech.2017.10.109

    Article  CAS  PubMed  Google Scholar 

  33. A.A. Najafpoor, M. Davoudi, R. Salmani, Optimization of copper removal from aqueous solutions in a continuous electrochemical cell divided by cellulosic separator. Water. Sci. Technol. 75(5–6), 1233–1242 (2017). https://doi.org/10.2166/wst.2016.619

    Article  CAS  PubMed  Google Scholar 

  34. K. Hara, N. Kishimoto, M. Kato, H. Otsu, Efficacy of a two-compartment electrochemical flow cell introduced into a reagent-free UV/chlorine advanced oxidation process. Chem. Eng. J. 388, 124385 (2020). https://doi.org/10.1016/j.cej.2020.124385

    Article  CAS  Google Scholar 

  35. G. Syed Ibrahim, A. M. Isloor, R. Farnood, Fundamentals and basics of reverse osmosis. Current trends and future developments on (bio-) membranes fundamentals and basics of reverse osmosis. (Elsevier, 2020), pp 141–163.

  36. Y-N. Wang, R. Wang, Reverse osmosis membrane separation technology Membrane Separation Principles and Applications. (Elsevier, 2019), pp 1–45.

  37. B. Ooi, J. Sum, J. Beh, W. J. Lau, S. Lai, Materials and engineering design of interfacial polymerized thin film composite nanofiltration membrane for industrial applications. (Elservier, 2019), pp 47–83.

  38. D. Ankoliya, B. Mehta, H. Raval, Advances in surface modification techniques of reverse osmosis membrane over the years. Sep. Sci. Technol. 54, 293–310 (2019). https://doi.org/10.1080/01496395.2018.1483404

    Article  CAS  Google Scholar 

  39. A. García, Y. Quintero, N. Vicencio, B. Rodríguez, D. Ozturk, E. Mosquera, T.P. Corrales, U. Volkmann, Influence of Tio2 nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composites membranes. RSC. Adv. 6(86), 82941–82948 (2016). https://doi.org/10.1039/C6RA17999A

    Article  CAS  Google Scholar 

  40. M. Armendariz Ontiveros, Y. Quintero, A. Llanquilef, M. Morel, L. Argentel Martínez, A. García García, A. García, Anti-biofouling and desalination properties of thin film composite reverse osmosis membranes with copper and iron nanoparticles. Materials. 12(13), 2081 (2019). https://doi.org/10.3390/ma12132081

  41. A. Elhalil, H. Tounsadi, R. Elmoubarki, F. Mahjoubi, M. Farnane, M. Sadiq, M. Abdennouri, S. Qourzal, N. Barka, Factorial experimental design for the optimization of catalytic degradation of malachite green dye in aqueous solution by Fenton process. Water. Resour. Ind. 15, 41–48 (2016). https://doi.org/10.1016/j.wri.2016.07.002

    Article  Google Scholar 

  42. D. E. Santiago, O. González-Díaz, J. Araña, E. Pulido Melián, J. Pérez-Peña, J. Doña-Rodríguez, Factorial experimental design of imazalil-containing wastewater to be treated by Fenton-based processes. J. Photochem. Photobiol. A. 353, 240–250 (2018). https://doi.org/10.1016/j.jphotochem.2017.11.038

  43. J. D. García-Espinoza, I. Robles, V. Gil, E. Becerril-Bravo, J. A. Barrios, L. A. Godínez, Electrochemical degradation of triclosan in aqueous solution. A study of the performance of an electro-Fenton reactor. J. Environ. Chem. Eng. 7(4), 103228 (2019). https://doi.org/10.1016/j.jece.2019.103228

  44. I. Kolthoff, R. Belcher, G. Matsuyama, V. Stenger, Volumetric analysis Vol 3. (Interscience Publishers, New York, 1957). https://doi.org/10.1002/jps.3030470330

  45. H. Lin, H. Zhang, X. Wang, L. Wang, J. Wu, Electro-Fenton removal of Orange II in a divided cell: reaction mechanism, degradation pathway and toxicity evolution. Sep. Purif. Technol. 122, 533–540 (2014). https://doi.org/10.1016/j.seppur.2013.12.010

    Article  CAS  Google Scholar 

  46. P. Liang, M. Rivallin, S. Cerneaux, S. Lacour, E. Petit, M. Cretin, Coupling cathodic Electro-Fenton reaction to membrane filtration for AO7 dye degradation: a successful feasibility study. J. Membr. Sci. 510, 182–190 (2016). https://doi.org/10.1016/j.memsci.2016.02.071

    Article  CAS  Google Scholar 

  47. G. Varank, S.Y. Guvenc, A. Demir, A comparative study of electrocoagulation and electro-Fenton for food industry wastewater treatment: multiple response optimization and cost analysis. Sep. Sci. Technol. 53(17), 2727–2740 (2018). https://doi.org/10.1080/01496395.2018.1470643

    Article  CAS  Google Scholar 

  48. T. Yatagai, Y. Ohkawa, D. Kubo, Y. Kawase, Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle. J. Environ. Sci. Health. A. 52(1), 74–83 (2016). https://doi.org/10.1080/10934529.2016.1229935

    Article  CAS  Google Scholar 

  49. L. Jimenez-Lima, S. Silva-Martínez, J. Hernández, F. Sierra, A. Alvarez-Gallegos, Modeling methylene blue oxidation by means of Fenton chemistry enhanced by UV irradiation at mild conditions. Desalination. Water. Treat. 55(13), 3646–3652 (2014). https://doi.org/10.1080/19443994.2014.939864

    Article  CAS  Google Scholar 

  50. F. Sopaj, N. Oturan, J. Pinson, F. Podvorica, M.A. Oturan, Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine. Appl. Catal. B. 199, 331–341 (2016). https://doi.org/10.1016/j.apcatb.2016.06.035

    Article  CAS  Google Scholar 

  51. A.-R.A. Giwa, I.A. Bello, A.B. Olabintan, O.S. Bello, T.A. Saleh, Kinetic and thermodynamic studies of fenton oxidative decolorization of methylene blue. Heliyon. 6(8), e04454 (2020). https://doi.org/10.1016/j.heliyon.2020.e04454

    Article  PubMed  PubMed Central  Google Scholar 

  52. F.Z. Saidi, M. Mokhtari, Central composite design to optimize the degradation of methylene blue by Fenton process. ChemistrySelect. 4(38), 11288–11293 (2019). https://doi.org/10.1002/slct.201902466

    Article  CAS  Google Scholar 

  53. G. Buftia, E. Rosales, M. Pazos, G. Lazar, M.A. Sanromán, Electro-Fenton process for implementation of acid black liquor waste treatment. Sci. Total. Environ. 635, 397–404 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.139

    Article  CAS  PubMed  Google Scholar 

  54. K. Cruz-González, O. Torres-López, A.M. García-León, E. Brillas, A. Hernández-Ramírez, J.M. Peralta-Hernández, Optimization of electro-Fenton/BDD process for decolorization of a model azo dye wastewater by means of response surface methodology. Desalination. 286, 63–68 (2012). https://doi.org/10.1016/j.desal.2011.11.005

    Article  CAS  Google Scholar 

  55. S. Toshio Fujiwara, K. Ribeiro, T. María de Andrade, Preparation and application of cellulose acetate/Fe films in the degradation of Reactive Black 5 dye through photo-Fenton reaction. Environ. Technol. 37(13), 1664–1675 (2016). https://doi.org/10.1080/09593330.2015.1127290

  56. T. Wang, Y. Zhou, S. Cao, J. Lu, Y. Zhou, Degradation of sulfanilamide by Fenton-like reaction and optimization using response surface methodology. Ecotoxicol. Environ. Saf. 172, 334–340 (2019). https://doi.org/10.1016/j.ecoenv.2019.01.106

    Article  CAS  PubMed  Google Scholar 

  57. R. Davarnejad, M. Mohammadi, A.F. Ismail, Petrochemical wastewater treatment by elector-Fenton process using aluminum and iron electrodes: statistical comparison. J. Water Process. Eng. 3, 18–25 (2014). https://doi.org/10.1016/j.jwpe.2014.08.002

    Article  Google Scholar 

  58. S. Yazici Guvenc, K. Dincer, G. Varank, Performance of electrocoagulation and electro-Fenton processes for treatment of nanofiltration concentrate of biologically stabilized landfill leachate. J. Water Process. Eng. 31, 100863 (2019). https://doi.org/10.1016/j.jwpe.2019.100863

  59. P. Kaur, V. Sangal, J. Kushwaha, Parametric study of electro-Fenton treatment for real textile wastewater disposal study and its cost analysis. Int. J. Environ. Sci. Technol. 16, 801–810 (2019). https://doi.org/10.1007/s13762-018-1696-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank TECNM/Instituto Tecnológico de Culiacán for providing the entire infrastructure for conducting this work.

Funding

This work was supported by the National Council of Science and Technology of Mexico through a doctoral scholarship: CONACYT PhD scholarship 2018–2022.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Blenda Ramirez-Pereda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermosillo-Nevárez, J.J., Bustos-Terrones, Y.A., Rangel-Peraza, J.G. et al. Technical–Economic Analysis of Hydrogen Peroxide Activation by a Sacrificial Anode: Comparison of Two Exchange Membranes. Electrocatalysis 13, 11–25 (2022). https://doi.org/10.1007/s12678-021-00689-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00689-0

Keywords

Navigation