Skip to main content

Advertisement

Log in

Electrochemical Degradation and Degree of Mineralization of the BY28 Dye in a Supporting Electrolyte Mixture Using an Expanded Dimensionally Stable Anode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Electrochemical treatments are attracting research attention and are being increasingly used due to their efficient degradation of organic contaminants in wastewater. In this work a home-made, expanded dimensionally stable anode (DSA) electrode (Ti–IrO2) was used owing to its excellent catalytic activity, corrosion-resistant, and chemical stability. A mixture of supporting electrolytes was used to ease the treatment process by increasing the ionic conductivity of the reaction medium, which led to reduced energy consumption, improvement of the degradation efficiency, as well as a real sample was nearly simulated. The study focused on the electrochemical degradation and degree of mineralization of the total organic carbon of the textile dye Basic Yellow 28 (BY28). The pH, supporting electrolyte mixture concentration, and current density parameters were optimized. Furthermore, to assess the efficiency of the dye degradation, the intermediates generated via electrolysis were monitored using Fourier–transform infrared, ultraviolet–visible spectroscopic, and gas chromatography–mass spectrometry techniques. The results revealed that, color removal% of the dye, chemical oxygen demand (COD)%, total organic carbon (TOC)% (degree of mineralization), current efficiency, and energy consumption values were 94.3%, 72.1%, 73.5%, 65.7%, and 41.8 kWh (g COD)−1, respectively. Cyclic voltammetry results suggest that the redox process of the BY28 dye on the surface of the Ti–IrO2 electrode can be mainly attributed to diffusion mass transport followed by- product adsorption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.G. Chakinala, P.R. Gogate, A.E. Burgess, D.H. Bremner, Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chem. Eng. J. 152(2–3), 498–502 (2009). https://doi.org/10.1016/j.cej.2009.05.018

    Article  CAS  Google Scholar 

  2. H. Wang, Y. Huang, Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2. J. Hazard. Mater. 191(1–3), 163–169 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.057

    Article  CAS  PubMed  Google Scholar 

  3. F. Ji, C. Li, J. Zhang, L. Deng, Heterogeneous photo-Fenton decolorization of methylene blue over LiFe(WO4)2 catalyst. J. Hazard. Mater. 186(2–3), 1979–1984 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.089

    Article  CAS  PubMed  Google Scholar 

  4. X. bing Zhang, W. yi Dong, and W. Yang, “Decolorization efficiency and kinetics of typical reactive azo dye RR2 in the homogeneous Fe(II) catalyzed ozonation process,” Chem. Eng. J. 233, 14–23 (2013). https://doi.org/10.1016/j.cej.2013.07.098.

  5. A.B.S. Nossol, S.M.C. Rosa, E. Nossol, A.J.G. Zarbin, P. Peralta-Zamora, Degradação fotocatalítica de corante utilizando-se nanocompósito TiO2/Óxido de grafeno. Quim. Nova 39(6), 686–690 (2016). https://doi.org/10.5935/0100-4042.20160081

    Article  CAS  Google Scholar 

  6. L. Labiadh, M.A. Oturan, M. Panizza, N. Ben Hamadi, and S. Ammar, “Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst,” J. Hazard. Mater. 297, 34–41 (2015). https://doi.org/10.1016/j.jhazmat.2015.04.062.

  7. V.M. Vasconcelos, C. Ponce-De-León, J.L. Nava, M.R.V. Lanza, Electrochemical degradation of RB-5 dye by anodic oxidation, electro-Fenton and by combining anodic oxidation-electro-Fenton in a filter-press flow cell. J. Electroanal. Chem. 765, 179–187 (2016). https://doi.org/10.1016/j.jelechem.2015.07.040

    Article  CAS  Google Scholar 

  8. M. Punzi, A. Anbalagan, R. Aragão Börner, B.M. Svensson, M. Jonstrup, and B. Mattiasson, “Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: Evaluation of toxicity and microbial community structure,” Chem. Eng. J. 270, 290–299 (2015). https://doi.org/10.1016/j.cej.2015.02.042.

  9. A. Hethnawi, N.N. Nassar, A.D. Manasrah, G. Vitale, Polyethylenimine-functionalized pyroxene nanoparticles embedded on Diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. Chem. Eng. J. 320, 389–404 (2017). https://doi.org/10.1016/j.cej.2017.03.057

    Article  CAS  Google Scholar 

  10. L. M. C. Bulla, J. C. Polonio, A. L. de B. Portela-Castro, V. Kava, J. L. Azevedo, and J. A. Pamphile, “Activity of the endophytic fungi Phlebia sp. and Paecilomyces formosus in decolourisation and the reduction of reactive dyes’ cytotoxicity in fish erythrocytes,” Environ. Monit. Assess. 189(2) (2017). https://doi.org/10.1007/s10661-017-5790-0.

  11. E. Brillas and C.A. Martínez-Huitle, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review,” Appl Catal B: Environ. 166167. Elsevier, 603–643 (2015). https://doi.org/10.1016/j.apcatb.2014.11.016.

  12. H. Olvera-Vargas, N. Oturan, E. Brillas, D. Buisson, G. Esposito, M.A. Oturan, Electrochemical advanced oxidation for cold incineration of the pharmaceutical ranitidine: Mineralization pathway and toxicity evolution. Chemosphere 117(1), 644–651 (2014). https://doi.org/10.1016/j.chemosphere.2014.09.084

    Article  CAS  PubMed  Google Scholar 

  13. H.T. Madsen, E.G. Søgaard, J. Muff, Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) at boron doped diamond (BDD) and platinum-iridium anodes. Chemosphere 109, 84–91 (2014). https://doi.org/10.1016/j.chemosphere.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  14. N. Tran, P. Drogui, T.L. Doan, T.S. Le, H.C. Nguyen, Electrochemical degradation and mineralization of glyphosate herbicide. Environ. Technol. (United Kingdom) 38(23), 2939–2948 (2017). https://doi.org/10.1080/09593330.2017.1284268

    Article  CAS  Google Scholar 

  15. A. Dargahi, A. Ansari, D. Nematollahi, G. Asgari, R. Shokoohi, M.R. Samarghandi, Parameter optimization and degradation mechanism for electrocatalytic degradation of 2,4-diclorophenoxyacetic acid (2,4-D) herbicide by lead dioxide electrodes. RSC Adv. 9(9), 5064–5075 (2019). https://doi.org/10.1039/c8ra10105a

    Article  CAS  Google Scholar 

  16. X.D. Tang, S. Jiao, J.J. Li, N. Hu, Deep desulfurization of kerosene by electrochemical oxidation and extraction in Mn2+/Mn3+ electrolyte. Pet. Sci. Technol. 36(7), 500–506 (2018). https://doi.org/10.1080/10916466.2018.1428624

    Article  CAS  Google Scholar 

  17. F. Nabizadeh Chianeh and J. Basiri Parsa, “Decolorization of azo dye C.I. Acid Red 33 from aqueous solutions by anodic oxidation on MWCNTs/Ti electrodes,” Desalin. Water Treat. 57(43), 20574–20581 (2016). https://doi.org/10.1080/19443994.2015.1110716.

  18. S. Cotillas, J. Llanos, K. Castro-Ríos, G. Taborda-Ocampo, M.A. Rodrigo, P. Cañizares, Synergistic integration of sonochemical and electrochemical disinfection with DSA anodes. Chemosphere 163, 562–568 (2016). https://doi.org/10.1016/j.chemosphere.2016.08.034

    Article  CAS  PubMed  Google Scholar 

  19. C. Massué, V. Pfeifer, X. Huang, J. Noack, A. Tarasov, S. Cap, R. Schlögl, High-performance supported iridium oxohydroxide water oxidation electrocatalysts. ChemSusChem 10(9), 1943–1957 (2017). https://doi.org/10.1002/cssc.201601817

    Article  CAS  PubMed  Google Scholar 

  20. H. Li, Q. Yu, B. Yang, Z. Li, L. Lei, Electro-catalytic oxidation of artificial human urine by using BDD and IrO2 electrodes. J. Electroanal. Chem. 738, 14–19 (2015). https://doi.org/10.1016/j.jelechem.2014.11.018

    Article  CAS  Google Scholar 

  21. M.R. Gonçalves, I.P. Marques, J.P. Correia, Electrochemical mineralization of anaerobically digested olive mill wastewater. Water Res. 46(13), 4217–4225 (2012). https://doi.org/10.1016/j.watres.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  22. E. Chatzisymeon, S. Fierro, I. Karafyllis, D. Mantzavinos, N. Kalogerakis, A. Katsaounis, Anodic oxidation of phenol on Ti/IrO2 electrode: Experimental studies. Catal. Today 151(1–2), 185–189 (2010). https://doi.org/10.1016/j.cattod.2010.02.076

    Article  CAS  Google Scholar 

  23. J.P. Lorimer, T.J. Mason, M. Plattes, S.S. Phull, D.J. Walton, Degradation of dye effluent. Pure and Applied Chemistry 73(12), 1957–1968 (2001). https://doi.org/10.1351/pac200173121957

    Article  CAS  Google Scholar 

  24. M. Cerón-Rivera, M.M. Dávila-Jiménez, M.P. Elizalde-González, Degradation of the textile dyes Basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes. Chemosphere 55(1), 1–10 (2004). https://doi.org/10.1016/j.chemosphere.2003.10.060

    Article  CAS  PubMed  Google Scholar 

  25. L. Yahia Cherif, I. Yahiaoui, F. Aissani-Benissad, K. Madi, N. Benmehdi, F. Fourcade, A. Amrane, “Heat attachment method for the immobilization of TiO2 on glass plates: Application to photodegradation of basic yellow dye and optimization of operating parameters, using response surface methodology,” Ind. Eng. Chem. Res. 53 (10), 3813–3819 (2014). https://doi.org/10.1021/ie403970m.

  26. N. Daneshvar, A.R. Khataee, N. Djafarzadeh, The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process. J. Hazard. Mater. 137(3), 1788–1795 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.042

    Article  CAS  PubMed  Google Scholar 

  27. A.E. Ghaly, R. Ananthashankar, M. Alhattab, V.V. Ramakrishnan, A. Ghaly, Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5(1), 182 (2014). https://doi.org/10.4172/2157-7048.1000182

    Article  CAS  Google Scholar 

  28. H. Britton, Hydrogen ions 4th edn. (1952)

  29. A.M. Awad, N.A.A. Ghany, Electrochemical advanced oxidation of cosmetics waste water using IrO2/Ti-modified electrode. Desalin. Water Treat. 53(3), 681–688 (2015). https://doi.org/10.1080/19443994.2013.848671

    Article  CAS  Google Scholar 

  30. N.A. Abdel Ghany, N.M. Deiab, and A.A. El-Moneim, “Anodically deposited Mn-Mo-O electrodes by direct and pulse current as novel anode materials for hydrogen production during seawater electrolysis,” Egypt. J. Chem. 52 (Special issue), 13–27 (2009). https://doi.org/10.1016/S0013-4686(02)00539-X.

  31. N.A.A. Ghany, S. Meguro, N. Kumagai, K. Asami, K. Hashimoto, Anodically deposited Mn-Mo-Fe oxide anodes for oxygen evolution in hot seawater electrolysis. Mater. Trans. 44(10), 2114–2123 (2003). https://doi.org/10.2320/matertrans.44.2114

    Article  Google Scholar 

  32. F. Orts, A.I. del Río, J. Molina, J. Bonastre, F. Cases, Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL®. J. Electroanal. Chem. 808, 387–394 (2018). https://doi.org/10.1016/j.jelechem.2017.06.051

    Article  CAS  Google Scholar 

  33. N. Nordin, S.F.M. Amir, Riyanto, and M.R. Othman, “Textile industries wastewater treatment by electrochemical oxidation technique using metal plate,” Int. J. Electrochem. Sci. 8(9), 11403–11415 (2013)

  34. B.K. Körbahti, K.M. Turan, Electrochemical decolorization of reactive violet 5 textile dye using Pt/Ir electrodes. J. Turkish Chem. Soc. Sect. A Chem. 3(3), 229 (2016). https://doi.org/10.18596/jotcsa.28768

    Article  CAS  Google Scholar 

  35. P. Kariyajjanavar, J. Narayana, Y. Arthoba Nayaka, N. Jogttappa, and Y. Arthoba Nayaka, “Studies on degradation of reactive textile dyes solution by electrochemical method,” J. Hazard. Mater. 190, 952–961 (2011). https://doi.org/10.1016/j.jhazmat.2011.04.032.

  36. S. Chellammal, P. Kalaiselvi, P. Ganapathy, G. Subramanian, Anodic incineration of phthalic anhydride using RuO2–IrO2–SnO2–TiO2 coated on Ti anode. Arab. J. Chem. 9, S1690–S1699 (2016). https://doi.org/10.1016/j.arabjc.2012.04.030

    Article  CAS  Google Scholar 

  37. D.Ž. Mijin, M.L. Avramov Ivić, A.E. Onjia, and B.N. Grgur, “Decolorization of textile dye CI Basic Yellow 28 with electrochemically generated active chlorine,” Chem. Eng. J. 204205, 151–157 (2012). https://doi.org/10.1016/j.cej.2012.07.091.

  38. L. Szpyrkowicz, C. Juzzolino, S.N. Kaul, S. Daniele, M.D. de Faveri, Electrochemical oxidation of dyeing baths bearing disperse dyes. Ind. Eng. Chem. Res. 39(9), 3241–3248 (2000). https://doi.org/10.1021/ie9908480

    Article  CAS  Google Scholar 

  39. U. Schümann, P. Gründler, Electrochemical degradation of organic substances at PbO2 anodes: Monitoring by continuous CO2 measurements. Water Res. 32(9), 2835–2842 (1998). https://doi.org/10.1016/S0043-1354(98)00046-3

    Article  Google Scholar 

  40. Q. Li, Q. Zhang, H. Cui, L. Ding, Z. Wei, J. Zhai, Fabrication of cerium-doped lead dioxide anode with improved electrocatalytic activity and its application for removal of Rhodamine B. Chem. Eng. J. 228, 806–814 (2013). https://doi.org/10.1016/j.cej.2013.05.064

    Article  CAS  Google Scholar 

  41. R.M. Belal, M.A. Zayed, R.M. El-Sherif, and N.A. Abdel Ghany, “Advanced electrochemical degradation of basic yellow 28 textile dye using IrO2/Ti meshed electrode in different supporting electrolytes,” J. Electroanal. Chem. 114979 (2021). https://doi.org/10.1016/j.jelechem.2021.114979.

  42. M.J.R. Santos, M.C. Medeiros, T.M.B.F. Oliveira, C.C.O. Morais, S.E. Mazzetto, C.A. Martínez-Huitle, S.S.L. Castro, Electrooxidation of cardanol on mixed metal oxide (RuO2-TiO2 and IrO2-RuO2-TiO2) coated titanium anodes: insights into recalcitrant phenolic compounds. Electrochim. Acta 212, 95–101 (2016). https://doi.org/10.1016/j.electacta.2016.06.145

    Article  CAS  Google Scholar 

  43. R. Bhatnagar, H. Joshi, I.D. Mall, and V.C. Srivastava, “Electrochemical oxidation of textile industry wastewater by graphite electrodes,” J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 49(8), 955–966 (2014). https://doi.org/10.1080/10934529.2014.894320.

  44. P. Kariyajjanavar, J. Narayana, Y.A. Nayaka, Degradation of textile wastewater by electrochemical method. Hydrol Curr. Res 2, 110 (2011). https://doi.org/10.4172/2157-7587.1000110

    Article  CAS  Google Scholar 

  45. N. Jiang, Y. Wang, Q. Zhao, Z. Ye, Application of Ti/IrO2 electrode in the electrochemical oxidation of the TNT red water. Environ. Pollut. 259, 113801 (2020). https://doi.org/10.1016/j.envpol.2019.113801

    Article  CAS  PubMed  Google Scholar 

  46. E. Isarain-Chávez, M.D. Baró, E. Rossinyol, U. Morales-Ortiz, J. Sort, E. Brillas, E. Pellicer, Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes. Electrochim. Acta 244, 199–208 (2017). https://doi.org/10.1016/j.electacta.2017.05.101

    Article  CAS  Google Scholar 

  47. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109(12), 6541–6569 (2009). https://doi.org/10.1021/cr9001319

    Article  CAS  PubMed  Google Scholar 

  48. F.C. Moreira, R.A.R. Boaventura, E. Brillas, and V.J.P. Vilar, “Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters,” Appl Catal. B: Environ. 202, Elsevier B.V. 217–261 (2017). https://doi.org/10.1016/j.apcatb.2016.08.037.

  49. D.Ž Mijin, D.M. Dabić, J.M. Mirković, B.Đ Božić, B.N. Grgur, Influence of microwave irradiation on hypochlorite decolorisation of synthetic dyes. Zast. Mater. 57(1), 63–70 (2016). https://doi.org/10.5937/ZasMat1601063M

    Article  Google Scholar 

  50. S. Singh, V.C. Srivastava, I.D. Mall, Mechanism of dye degradation during electrochemical treatment. J. Phys. Chem. C 117(29), 15229–15240 (2013). https://doi.org/10.1021/jp405289f

    Article  CAS  Google Scholar 

  51. P.A. Carneiro, C.S. Fugivara, R.F.P. Nogueira, N. Boralle, M.V.B. Zanoni, A comparative study on chemical and electrochemical degradation of reactive blue 4 dye. Portugaliae Electrochimica Acta 21(1), 49–67 (2003). https://doi.org/10.4152/pea.200301049

    Article  CAS  Google Scholar 

  52. G. Socrates, Infrared Characteristic Group Frequencies, 3rd edn. (John Wiley & Sons, New York, 1997)

    Google Scholar 

  53. M. Snehalatha, C. Ravikumar, N. Sekar, V.S. Jayakumar, I.H. Joe, FT-Raman, IR and UV-visible spectral investigations and ab initio computations of a nonlinear food dye amaranth. J. Raman Spectrosc. 39(7), 928–936 (2008). https://doi.org/10.1002/jrs.1938

    Article  CAS  Google Scholar 

  54. G. Wang, Y. Liu, J. Ye, Z. Lin, X. Yang, Electrochemical oxidation of methyl orange by a Magnéli phase Ti4O7 anode. Chemosphere 241, 125084 (2020). https://doi.org/10.1016/j.chemosphere.2019.125084

    Article  CAS  PubMed  Google Scholar 

  55. S. Raghu, C.W. Lee, S. Chellammal, S. Palanichamy, C.A. Basha, Evaluation of electrochemical oxidation techniques for degradation of dye effluents-A comparative approach. J. Hazard. Mater. 171(1–3), 748–754 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.063

    Article  CAS  PubMed  Google Scholar 

  56. M.G. Tavares, L.V.A. da Silva, A.M. Sales Solano, J. Tonholo, C.A. Martínez-Huitle, and C.L.P.S. Zanta, “Electrochemical oxidation of Methyl Red using Ti/Ru 0.3Ti 0.7O 2 and Ti/Pt anodes,” Chem. Eng. J. 204205, 141–150 (2012). https://doi.org/10.1016/j.cej.2012.07.056.

Download references

Funding

This study is funded by the National Research Centre (NRC) Egypt, and Faculty of Science, Cairo University, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil A. Abdel Ghany.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belal, R.M., Zayed, M.A., El-Sherif, R.M. et al. Electrochemical Degradation and Degree of Mineralization of the BY28 Dye in a Supporting Electrolyte Mixture Using an Expanded Dimensionally Stable Anode. Electrocatalysis 13, 26–36 (2022). https://doi.org/10.1007/s12678-021-00680-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00680-9

Keywords

Navigation