Skip to main content

Advertisement

Log in

Novel Strontium/Iron Bimetallic Carbon Composites as Synergistic Catalyst for Oxygen Reduction Reaction in Microbial Fuel Cells

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

It is critical to develop non-noble metal (NNM) electrocatalysts with excellent stability and innovative activity for oxygen reduction reaction (ORR) in the microbial fuel cells (MFCs), which is a promising energy conversion technology. Herein, the preparation of iron carbide electrocatalysts (SrCO3/Fe3C) by the pyrolysis of a bimetal precursor (Sr and Fe) is proposed as a feasible strategy to realize a highly active electrocatalyst for ORR. Based on the catalytic potential of Sr-based materials, Fe species doping can provide more beneficial active sites for ORR. Concisely, the SrCO3/Fe3C(1:12) catalyst achieves the onset potential of 0.197 V (vs. Ag/AgCl) superior than Pt/C catalyst (0.193 V vs. Ag/AgCl) and the half-wave potential of −0.157 V (vs. Ag/AgCl) in 0.1-M KOH solution. Furthermore, the electrocatalyst exhibits nearly four-electron pathway, and generates less than 3% H2O2. Compared with Pt/C catalyst, it possesses preferable stability and superior methanol tolerance. Moreover, a composite electrode with SrCO3/Fe3C(1:12) as a catalyst on the carbon cloth demonstrated a superb air cathode in MFCs with a power density of 398.98 mW m−2, which can outperform than 10 wt% Pt/C catalysts (342.13 mW m−2) on MFCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Zhong, X. Lu, Y. Dai, S. Yang, J. Li, H. Zhang, Y. Wang, J. Zuo, J. Tang, M. Su, UiO66-NH2 as self-sacrificing template for Fe/N-doped hierarchically porous carbon with high electrochemical performance for oxygen reduction in microbial fuel cells. Electrochim. Acta 323, 134777–134788 (2019)

    Article  CAS  Google Scholar 

  2. A.D. Ramón-Fernández, M.J. Salar-García, D.R. Fernández, J. Greenman, I.A. Ieropoulos, Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells. Energy 213, 118806–118815 (2020)

    Article  PubMed  Google Scholar 

  3. K. Rabaey, W. Verstraete, Microbial fuel cells: novel biotechnology for energy generation. Trends Biotech. 23, 291–298 (2005)

    Article  CAS  Google Scholar 

  4. I. Gajda, J. Greenman, C. Santoro, A. Serov, C. Melhuish, P. Atanassov, I.A. Ieropoulos, Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy 144, 1073–1079 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Xue, H. Huang, H. Miao, S. Sun, Q. Wang, S. Li, Z. Liu, Electrostatic self-assembly of the composite La0.7Sr0.3MnO3@Ce0.75Zr0.25O2 as electrocatalyst for the oxygen reduction reaction in aluminum-air batteries. Energy. Technol. 5, 2226–2233 (2017)

  6. J. Li, X. Wu, L. Chen, N. Li, Z. Liu, Bifunctional MOF-derived Co-N-doped carbon electrocatalysts for high-performance zinc-air batteries and MFCs. Energy 156, 95–102 (2018)

    Article  CAS  Google Scholar 

  7. T.N. Tran, C.H. Shin, B.J. Lee, J.S. Samdani, J.D. Park, T.H. Kang, J.S. Yu, Fe–N-functionalized carbon electrocatalyst derived from a zeolitic imidazolate framework for oxygen reduction: Fe and NH3 treatment effects. Catal. Sci. Technol. 8, 5368–5381 (2018)

    Article  CAS  Google Scholar 

  8. M.J. Dzara, J.M. Christ, P. Joghee, C. Ngo, C.A. Cadigan, G. Bender, R.M. Richards, R. O’Hayre, S. Pylypenko, La and Al co-doped CaMnO3 perovskite oxides: from interplay of surface properties to anion exchange membrane fuel cell performance. J. Power. Sources 375, 265–276 (2018)

    Article  CAS  Google Scholar 

  9. J. Hu, Z. Shi, C. Su, B. Lu, Z. Shao, H. Huang, Anchoring perovskite LaMnO3 nanoparticles on biomass-derived N, P co-doped porous carbon for efficient oxygen reduction. Electrochim. Acta 274, 40–48 (2018)

    Article  CAS  Google Scholar 

  10. J. Ma, D. Xiao, C.L. Chen, Q. Luo, Y. Yu, J. Zhou, C. Guo, K. Li, J. Ma, L. Zheng, X. Zuo, Uric acid-derived Fe3C-containing mesoporous Fe/N/C composite with high activity for oxygen reduction reaction in alkaline medium. J. Power. Sources 378, 491–498 (2018)

    Article  CAS  Google Scholar 

  11. C. Han, Z. Chen, Study on the synergism of thermal transport and electrochemical of PEMFC based on N. P co-doped graphene substrate electrode. Energy 214, 118808–118821 (2021)

    CAS  Google Scholar 

  12. W. Wang, L. Zhen, C. Xu, L. Yang, W. Shao, Room temperature synthesis of hierarchical SrCO3 architectures by a surfactant-free aqueous solution route. Cryst. Growth Des. 8, 1734–1740 (2008)

    Article  CAS  Google Scholar 

  13. K. Wang, S. Ji, X. Shi, J. Tang, Autothermal oxidative coupling of methane on the SrCO3/Sm2O3 catalysts. Catal. Commun. 10, 807–810 (2009)

    Article  CAS  Google Scholar 

  14. Y. Kobayashi, K. Omata, M. Yamada, Screening of additives to a Co/SrCO3 catalyst by artificial neural network for preferential oxidation of CO in excess H2. Ind. Eng. Chem. Res. 49, 1541–1549 (2010)

    Article  CAS  Google Scholar 

  15. X. Zhang, M. Wang, A. Yang, C. Kong, Y. Zhai, Effect of SrCO3 additive on CuZnAl/HZSM-5 catalyst property for the direct DME synthesis. Water Air Soil Poll. 226, 378 (2015)

    Article  CAS  Google Scholar 

  16. Z.K. Ghouri, K. Elsaid, S. Al-Meer, N.A.M. Barakat, Applicable anode based on Co3O4–SrCO3 heterostructure nanorods-incorporated CNFs with low-onset potential for DUFCs. Appl. Nanosci. 7, 625–631 (2017)

    Article  CAS  Google Scholar 

  17. Y. Yang, J. Wang, Y. Zhu, L. Lan, H. Zhang, C. Liu, K. Tao, J. Li, Fe3C/C nanoparticles encapsulated in N-doped graphene aerogel: an advanced oxygen reduction reaction catalyst for fiber-shaped fuel cells. Int. J. Hydrogen Energ. 44, 18393–18402 (2019)

    Article  CAS  Google Scholar 

  18. V.M. Ortiz Martínez, M.J. Salar García, K. Touati, F.J. Hernández Fernández, A.P. de los Ríos, F. Belhoucine, A. Alioua Berrabbah, Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells. Energy 113, 1241–1249 (2016)

  19. R. Wang, J. Li, S. Cai, Y. Zeng, H. Zhang, H. Cai, H. Tang, Facile synthesis of Fe3C@Graphene hybrid nanorods as an efficient and robust catalyst for oxygen reduction reaction. Chem. Plus. Chem 81, 646–651 (2016)

    CAS  PubMed  Google Scholar 

  20. J. Yang, J. Hu, M. Weng, R. Tan, L. Tian, J. Yang, J. Amine, J. Zheng, H. Chen, F. Pan, Fe-cluster pushing electrons to N-doped graphiticlayers with Fe3C(Fe) hybrid nanostructure to enhance O2 reduction catalysis of Zn-Air batteries. ACS Appl. Mater. Inter. 9, 4587–4596 (2017)

    Article  CAS  Google Scholar 

  21. R. Huang, Y. Lei, D. Zhang, H. Xie, X. Liu, H. Wang, Solvent-free assembled Fe-chitosan chelates derived N-doped carbon layer-encapsulated Fe/Fe3C for ORR and OER. NANO 15, 2050070–2050087 (2020)

    Article  CAS  Google Scholar 

  22. L. Cui, Q. Zhang, X. He, Fabrication of Fe3C caged in N doped carbon nanotube as a desirable ORR electrocatalyst by a facile method. J. Electroanal. Chem. 871, 114316–114323 (2020)

    Article  CAS  Google Scholar 

  23. Y. Hu, J.O. Jensen, W. Zhang, S. Martin, R. Chenitz, C. Pan, W. Xing, N.J. Bjerrum, Q. Li, Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells. J. Mater. Chem. A 3, 1752–1760 (2015)

    Article  CAS  Google Scholar 

  24. E. Krzystowczyk, X. Wang, J. Dou, V. Haribal, F. Li, Substituted SrFeO3 as robust oxygen sorbents for thermochemical air separation: correlating redox performance with compositional and structural properties. Phys. Chem. Chem. Phys. 22, 8924–8932 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. P.L. Alireza, Y.T.C. Ko, J. Gillett, C.M. Petrone, J.M. Cole, G.G. Lonzarich, S.E. Sebastian, Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures. J. Phys.-Condens. Mat. 21, 012208–012211 (2009)

    Article  CAS  Google Scholar 

  26. C.L. Yuan, Y.S. Hong, Microwave adsorption of core–shell structure polyaniline/SrFe12O19 composites. J. Mater. Sci. 45, 3470–3476 (2010)

    Article  CAS  Google Scholar 

  27. R.S.D. Toro, S. Pinto-Castilla, E. Cañizales, E. Ávila, Y. Díaz, B. Gutiérrez, Á.B. Sifontes, Synthesis of SrFe(Al)O3−δ–SrAl2O4 nanocomposites via green route. Nano-Struct. Nano-Object. 22, 100437–100445 (2020)

    Article  CAS  Google Scholar 

  28. C. Yao, H. Zhang, X. Liu, J. Meng, J. Meng, F. Meng, A niobium and tungsten co-doped SrFeO3-δ perovskite as cathode for intermediate temperature solid oxide fuel cells. Ceram. Int. 45, 7351–7358 (2019)

    Article  CAS  Google Scholar 

  29. I.V. Shamsutov, O.V. Merkulov, M.V. Patrakeev, SrFe12O19 as an impurity in perovskite-type ferrites. Mater. Lett. 283, 128753–128756 (2021)

    Article  CAS  Google Scholar 

  30. S.K. Rakshit, S.C. Parida, S. Dash, Z. Singh, B.K. Sen, V. Venugopal, Thermodynamic studies on SrFe12O19(s), SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s). J. Solid State Chem. 180, 523–532 (2007)

    Article  CAS  Google Scholar 

  31. M. Chatenet, J. Benziger, M. Inaba, S. Kjelstrup, T. Zawodzinski, R. Raccichini, Good practice guide for papers on fuel cells and electrolysis cells for the Journal of Power Sources. J. Power. Sources 451, 227635–227638 (2020)

    Article  CAS  Google Scholar 

  32. K. Zhong, M. Li, Y. Yang, H. Zhang, B. Zhang, J. Tang, J. Yan, M. Su, Z. Yang, Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells. Appl. Energ. 242, 516–525 (2019)

    Article  CAS  Google Scholar 

  33. X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. J. Power. Sources 172, 145–154 (2007)

    Article  CAS  Google Scholar 

  34. M. Li, H. Zhang, T. Xiao, B. Zhang, J. Yan, D. Chen, Y. Chen, Rose flower-like nitrogen-doped NiCo2O4/carbon used as cathode electrocatalyst for oxygen reduction in air cathode microbial fuel cell. Electrochim. Acta 258, 1219–1227 (2017)

    Article  CAS  Google Scholar 

  35. H. Falcon, J.A. Barbero, J.A. Alonso, M.J. Martiez-Lope, J.L. Fierro, SrFeO3-δ perovskite oxides: chemical features and performance for methane combustion. Chem. Mater. 14, 2325–2333 (2002)

    Article  CAS  Google Scholar 

  36. Y. Chang, H.I. Hsiang, M.T. Liang, F. Yen, Phase evolution and thermal behaviors of the solid-state reaction between SrCO3 and Al2O3 to form SrAl2O4 under air and CO2-air atmospheres. Ceram. Int. 38, 2269–2276 (2012)

    Article  CAS  Google Scholar 

  37. N.I. Kim, S.H. Cho, S.H. Park, Y.J. Lee, R.A. Afzal, J. Yoo, Y.S. Seo, Y.J. Lee, J.Y. Park, B-site doping effects of NdBa0.75Ca0.25Co2O5+δ double perovskite catalysts for oxygen evolution and reduction reactions. J. Mater. Chem. A 6, 17807–17818 (2018)

  38. Z. Cui, Y. Li, G. Fu, X. Li, J.B. Goodenough, Robust Fe3Mo3C supported IrMn clusters as highly efficient bifunctional air electrode for metal-air battery. Adv. Mater. 29, 1702385–1702391 (2017)

    Article  CAS  Google Scholar 

  39. M. Karuppannan, J.E. Park, H.E. Bae, Y.-H. Cho, O.J. Kwon, A nitrogen and fluorine enriched Fe/Fe3C@C oxygen reduction reaction electrocatalyst for anion/proton exchange membrane fuel cells. Nanoscale 12, 2542–2554 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. M. Sastry, A. Kumar, C. Damle, S.R. Sainkar, M. Bhagwat, V. Ramaswamy, Crystallization of SrCO3 within thermally evaporated fatty acid films: unusual morphology of crystal aggregates. Cryst. Eng. Comm 3, 81–83 (2001)

    Article  Google Scholar 

  41. M. Li, Z. Sun, W. Yang, T. Hong, Z. Zhu, Y. Zhang, X. Wu, C. Xia, Mechanism for the enhanced oxygen reduction reaction of La0.6Sr0.4Co0.2Fe0.8O3−δ by strontium carbonate. Phys. Chem. Chem. Phys. 19, 503–509 (2017)

  42. T. Nguyen-Thanh, A. Bosak, J.D. Bauer, R. Luchitskaia, K. Refson, V. Milman, B. Winkler, Lattice dynamics and elasticity of SrCO3. J. Appl. Crystallogr. 49, 1982–1990 (2016)

    Article  CAS  Google Scholar 

  43. E. Bagherisereshki, J. Tran, F. Lei, N. AuYeung, Investigation into SrO/SrCO3 for high temperature thermochemical energy storage. Sol. Energy 160, 85–93 (2018)

    Article  CAS  Google Scholar 

  44. M. Wang, Y. Yang, X. Liu, Z. Pu, Z. Kou, P. Zhu, S. Mu, The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction. Nanoscale 9, 7641–7649 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. R. Ma, Y. Zhou, C. Hu, M. Yang, F. Wang, K. Yan, Q. Liu, J. Wang, Post iron-doping of activated nitrogen-doped carbon spheres as a high-activity oxygen reduction electrocatalyst. Energy. Storage. Mater. 13, 142–150 (2018)

    Article  Google Scholar 

  46. K. Zhong, L. Huang, M. Li, Y. Dai, Y. Wang, J. Zuo, H. Zhang, B. Zhang, S. Yang, J. Tang, J. Yan, M. Su, Cobalt/nitrogen-Co-doped nanoscale hierarchically porous composites derived from octahedral metal-organic framework for efficient oxygen reduction in microbial fuel cells. Int. J. Hydrogen. Energ. 44, 30127–30140 (2019)

    Article  CAS  Google Scholar 

  47. D.H. Kwak, S.B. Han, Y.W. Lee, H.S. Park, I.A. Choi, M.C. Kim, S.J. Kim, D.H. Kim, J.I. Sohn, K. Won, Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl. Catal. B-Environ. 203, 889–898 (2017)

    Article  CAS  Google Scholar 

  48. Y. Liu, J. Ruan, S. Sang, Z. Zhou, Q. Wu, Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction. Electrochim. Acta 215, 388–397 (2016)

    Article  CAS  Google Scholar 

  49. R.P. Vasquez, SrCO3 by XPS. Surf. Sci. Spectra 1, 112–116 (1992)

    Article  CAS  Google Scholar 

  50. Y.A. Teterin, M.I. Sosulnikov, X-ray photoelectron study of Ca, Sr and Ba ion chemical states in high-Tc superconductors. Physica C 212, 306–316 (1993)

    Article  CAS  Google Scholar 

  51. Z. Li, L. Lv, J. Wang, X. Ao, Y. Ruan, D. Zha, G. Hong, Q. Wu, Y. Lan, C. Wang, J. Jiang, M. Liu, Engineering phosphorus-doped LaFeO3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 47, 199–209 (2018)

    Article  CAS  Google Scholar 

  52. I.N. Shabanova, V.A. Trapeznikov, A study of the electronic structure of Fe3C, Fe3Al and Fe3Si by x-ray photoelectron spectroscopy. J. Electron. Spectrosc. 6, 297–307 (1975)

    Article  CAS  Google Scholar 

  53. K. Zhong, Y. Wang, Q. Wu, H. You, H. Zhang, M. Su, R. Liang, J. Zuo, S. Yang, J. Tang, Highly conductive skeleton Graphitic-C3N4 assisted Fe-based metal-organic frameworks derived porous bimetallic carbon nanofiber for enhanced oxygen-reduction performance in microbial fuel cells. J. Power. Sources 467, 228313–228323 (2020)

    Article  CAS  Google Scholar 

  54. K. Singh, F. Razmjooei, J.S. Yu, Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: a review. J. Mater. Chem. A 5, 20095–20119 (2017)

    Article  CAS  Google Scholar 

  55. F. Zhang, J. Miao, W. Liu, D. Xu, X. Li, Heteroatom embedded graphene-like structure anchored on porous biochar as efficient metal-free catalyst for ORR. Int. J. Hydrogen. Energ. 44, 30986–30998 (2019)

    Article  CAS  Google Scholar 

  56. J. Xiao, Y. Xu, Y. Xia, J. Xi, S. Wang, Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano. Energy 24, 121–129 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation (nos. 51208122, 51778156, 51708142, 51708143), Pearl River S&T Nova Program of Guangzhou (201806010191), Science and Technology Program of Guangzhou (no. 201707010256), and Guangzhou University’s Training Program of Innovation Ability for Postgraduates (2020GDJC-M07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongguo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Henghui You and Huihui Shi contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5304 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, H., Shi, H., Arulmani, S.R.B. et al. Novel Strontium/Iron Bimetallic Carbon Composites as Synergistic Catalyst for Oxygen Reduction Reaction in Microbial Fuel Cells. Electrocatalysis 12, 759–770 (2021). https://doi.org/10.1007/s12678-021-00679-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00679-2

Keywords

Navigation