Skip to main content
Log in

Nitrogen-Doped Buckybowls as Potential Scaffold Material for Lithium-Sulfur Battery: A DFT Study

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Using density functional theory calculations, we have investigated the influence of nitrogen doping in buckybowls on lithium polysulfide adsorption. Nitrogen doping in the edges of buckybowls increases the bowl depth than in the hub position. Buckybowls with pyridinic nitrogen holds lithium polysulfides with higher adsorption energies. Besides, the deeper bowl depth enhances the adsorption of lithium polysulfides. Bowl to bowl inversion is observed during the interaction with lithium polysulfides. 2 N-Pyridinic-azacorannulene exhibits better lithium polysulfide adsorption than all other 2D surfaces due to lower chemical hardness and higher bowl depth. The inference obtained in the present study can help design better scaffold material for lithium polysulfide adsorption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Code Availability

The calculations have been carried out using Gaussian 09 provided by Gaussian Inc.

References

  1. L. Wang et al., A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries. J. Energy Chem. 22(1), 72–77 (2013)

    Article  Google Scholar 

  2. Q. Liu et al., Insight on lithium polysulfide intermediates in a Li/S battery by density functional theory. RSC Adv. 7(53), 33373–33377 (2017)

    Article  CAS  Google Scholar 

  3. M. Vijayakumar et al., Molecular structure and stability of dissolved lithium polysulfide species. Phys. Chem. Chem. Phys. 16(22), 10923–10932 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. B. Wang, S.M. Alhassan, and S.T. Pantelides, Formation of large polysulfide complexes during the lithium-sulfur battery discharge. Phys. Rev. Appl. 2(3), 034004 (2014)

  5. Y.X. Yin et al., Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013)

    Article  CAS  Google Scholar 

  6. Y.X. Yin. et al., Lithium-sulfur batteries: electrochemistry, materials, and prospects. 52, (2013)

  7. Q. Wang et al., A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. Phys. Chem. Chem. Phys. 16(39), 21225–21229 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Q. Pang et al., Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)

    Article  CAS  Google Scholar 

  9. X. Tao et al., Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Cheviri, S. Lakshmipathi, DFT study of chemical reactivity parameters of lithium polysulfide molecules Li2Sn(1≤n≤8) in gas and solvent phase. Computational and Theoretical Chemistry. 1202, 113323 (2021)

  11. N. Angulakshmi, A.M. Stephan, Efficient electrolytes for lithium–sulfur batteries. Frontiers in Energy Research 3(17), (2015)

  12. H. Pan et al., Ammonium additives to dissolve lithium sulfide through hydrogen binding for high-energy lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 9(5), 4290–4295 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. J.W. Park et al., Ionic liquid electrolytes for lithium–sulfur batteries. The Journal of Physical Chemistry C 117(40), 20531–20541 (2013)

    Article  CAS  Google Scholar 

  14. M. Cheviri, S. Lakshmipathi, Cobalt phthalocyanine is a suitable scaffold for lithium polysulfide (Li2Sn n = 2–8). Chem. Phys. Lett. 739, 136942 (2020)

  15. H.R. Jiang et al., Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study. Journal of Materials Chemistry A 6(5), 2107–2114 (2018)

    Article  CAS  Google Scholar 

  16. L.-C. Yin et al., Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 25, 203–210 (2016)

    Article  CAS  Google Scholar 

  17. L. Zhang et al., Borophene as efficient sulfur hosts for lithium–sulfur batteries: suppressing shuttle effect and improving conductivity. The Journal of Physical Chemistry C 121(29), 15549–15555 (2017)

    Article  CAS  Google Scholar 

  18. J. Zhao et al., Phosphorene as a promising anchoring material for lithium–sulfur batteries: a computational study. Journal of Materials Chemistry A 4(16), 6124–6130 (2016)

    Article  CAS  Google Scholar 

  19. E. Cha et al., 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat. Nanotechnol. 13(4), 337–344 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. K.C. Wasalathilake et al., Interaction between functionalized graphene and sulfur compounds in a lithium–sulfur battery – a density functional theory investigation. RSC Adv. 8(5), 2271–2279 (2018)

    Article  CAS  Google Scholar 

  21. G.S. Yi, E.S. Sim, Y.-C. Chung, Effect of lithium-trapping on nitrogen-doped graphene as an anchoring material for lithium–sulfur batteries: a density functional theory study. Phys. Chem. Chem. Phys. 19(41), 28189–28194 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. J. Chang et al., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9(1), 4480 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. S.P. Jand, Y. Chen, P. Kaghazchi, Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene. J. Power Sources 308, 166–171 (2016)

    Article  CAS  Google Scholar 

  24. T. Maihom et al., Lithium bond impact on lithium polysulfide adsorption with functionalized carbon fiber paper interlayers for lithium–sulfur batteries. The Journal of Physical Chemistry C 122(13), 7033–7040 (2018)

    Article  CAS  Google Scholar 

  25. S. Panigrahi, D. Umadevi, G.N. Sastry, Anomalous lithium adsorption propensity of monolayer carbonaceous materials: a density functional study. J. Chem. Sci. 128(10), 1641–1649 (2016)

    Article  CAS  Google Scholar 

  26. F. Li, Y. Su, J. Zhao, Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li–S batteries. Phys. Chem. Chem. Phys. 18(36), 25241–25248 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. G. Li et al., Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nat. Commun. 9(1), 705 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. T.Z. Hou et al., Lithium bond chemistry in lithium–sulfur batteries. Angew. Chem. Int. Ed. 56(28), 8178–8182 (2017)

    Article  CAS  Google Scholar 

  29. I.I. Soykal et al., Highly dispersed buckybowls as model carbocatalysts for C-H bond activation. Journal of Materials Chemistry A 3(16), 8667–8675 (2015)

    Article  CAS  Google Scholar 

  30. H. Wang et al., Advances in polar materials for lithium–sulfur batteries. Adv. Func. Mater. 28(38), 1707520 (2018)

    Article  CAS  Google Scholar 

  31. K. Kanagaraj et al., Chiral buckybowl molecules. Symmetry 9(9), (2017)

  32. S. Mebs et al., Experimental electron density of sumanene, a bowl-shaped fullerene fragment; comparison with the related corannulene hydrocarbon. Org. Biomol. Chem. 10(11), 2218–2222 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. J. Tsuji et al., Lithium K-edge XANES spectra for lithium compounds. X-Ray Spectrom. 31(4), 319–326 (2002)

    Article  CAS  Google Scholar 

  34. T.-C. Wu et al., Bowl-shaped fragments of C70 or higher fullerenes: synthesis, structural analysis, and inversion dynamics. Angew. Chem. Int. Ed. 52(4), 1289–1293 (2013)

    Article  CAS  Google Scholar 

  35. A.Y. Rogachev et al., Corannulene vs. C60-fullerene in metal binding reactions: a direct DFT and X-ray structural comparison. Dalton Transactions (35), 3871–3873 (2007)

  36. M.K. Chen et al., Highly curved bowl-shaped fragments of fullerenes: synthesis, structural analysis, and physical properties. Chem. A Eur. J. 20(2), 598–608 (2014)

  37. V.M. Tsefrikas, L.T. Scott, Geodesic polyarenes by flash vacuum pyrolysis. Chem. Rev. 106(12), 4868–4884 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Q. Tan et al., Enantioselective synthesis of a chiral nitrogen-doped buckybowl. Nat. Commun. 3, 891 (2012)

    Article  PubMed  CAS  Google Scholar 

  39. L.G. Scanlon et al., Investigation of corannulene for molecular hydrogen storage via computational chemistry and experimentation. J. Phys. Chem. B 110(15), 7688–7694 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. P.W. Rabideau, A. Sygula, Buckybowls: polynuclear aromatic hydrocarbons related to the buckminsterfullerene surface. Acc. Chem. Res. 29(5), 235–242 (1996)

    Article  CAS  Google Scholar 

  41. A.V. Zabula et al., A main group metal sandwich: five lithium cations jammed between two corannulene tetraanion decks. Science 333(6045), 1008 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. A. Reisi-Vanani, L. Alihoseini, Computational investigation of the adsorption of molecular hydrogen on the nitrogen-doped corannulene as a carbon nano-structure. Surf. Sci. 621, 146–151 (2014)

    Article  CAS  Google Scholar 

  43. N. Ikuma et al., Internal-peripheral diosmylation of sumanene overcoming the dearomatization hurdle by the distortion of the curved π-system. Chem. Lett. 47(6), 736–739 (2018)

    Article  CAS  Google Scholar 

  44. E. Nestoros, M.C. Stuparu, Corannulene: a molecular bowl of carbon with multifaceted properties and diverse applications. Chem. Commun. 54(50), 6503–6519 (2018)

    Article  CAS  Google Scholar 

  45. T.J. Seiders et al., Structure/energy correlation of bowl depth and inversion barrier in corannulene derivatives: combined experimental and quantum mechanical analysis. J. Am. Chem. Soc. 123(4), 517–525 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. U.D. Priyakumar, G.N. Sastry, First ab initio and density functional study on the structure, bowl-to-bowl inversion barrier, and vibrational spectra of the elusive C3v-symmetric buckybowl: sumanene, C21H12. J. Phys. Chem. A 105(18), 4488–4494 (2001)

    Article  CAS  Google Scholar 

  47. T. Lu, F. Chen, Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 38, 314–323 (2012)

    Article  PubMed  CAS  Google Scholar 

  48. T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012)

    Article  PubMed  CAS  Google Scholar 

  49. M. ang et al., Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: a first-principles study. AIP Advances 5(6), 067136 (2015)

  50. M. Dieb, T., Z. Hou, K. Tsuda, Structure prediction of boron-doped graphene by machine learning. J. Chem. Phys. 148(24), 241716 (2018)

  51. A. Akaishi et al., Structural stability and aromaticity of pristine and doped graphene nanoflakes. Jpn. J. Appl. Phys. 57, 0102BA (2018)

  52. S.T. Skowron et al., Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 44(10), 3143–3176 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. X. Ren et al., The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium–air battery: a first-principles study. Phys. Chem. Chem. Phys. 17(22), 14605–14612 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. M. Lalitha, S.S. Mahadevan, S. Lakshmipathi, Improved lithium adsorption in boron- and nitrogen-substituted graphene derivatives. J. Mater. Sci. 52(2), 815–831 (2017)

    Article  CAS  Google Scholar 

  55. M. Lalitha, L. Senthilkumar, DFT study on X−·(H2O)n=1-10 (X=OH, NO2, NO3, CO3) anionic water cluster. J. Mol. Graph. Model. 54, 148–163 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. V. Umadevi, L. Senthilkumar, P. Kolandaivel, Theoretical investigations on the hydrogen bonding of nitrile isomers with H2O, HF, NH3 and H2S. Mol. Simul. 39(11), 908–921 (2013)

    Article  CAS  Google Scholar 

  57. M. Lalitha, S. Lakshmipathi, Interface energetics of [Emim]+[X]− and [Bmim]+[X]− (X=BF4, Cl, PF6, TfO, Tf2N) based ionic liquids on graphene, defective graphene, and graphyne surfaces. J. Mol. Liq. 236, 124–134 (2017)

    Article  CAS  Google Scholar 

  58. S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19(4), 553–566 (1970)

  59. Y. Zhang et al., Computational investigation of adsorption of molecular hydrogen on lithium-doped corannulene. J. Phys. Chem. B 110(45), 22532–22541 (2006)

    Article  CAS  PubMed  Google Scholar 

  60. S. Armaković et al., Influence of sumanene modifications with boron and nitrogen atoms to its hydrogen adsorption properties. Phys. Chem. Chem. Phys. 18(4), 2859–2870 (2016)

    Article  PubMed  CAS  Google Scholar 

  61. P. Kaewmati et al., Synthesis of triaryltriazasumanenes. Chem. Lett. 46(1), 146–148 (2016)

    Article  CAS  Google Scholar 

  62. S. Armaković et al., Aromaticity, response, and nonlinear optical properties of sumanene modified with boron and nitrogen atoms. J. Mol. Model. 20(12), 2538 (2014)

    Article  PubMed  CAS  Google Scholar 

  63. A. Reisi-Vanani, F. Shamsali, Influence of nitrogen doping in sumanene framework toward hydrogen storage: a computational study. J. Mol. Graph. Model. 76, 475–487 (2017)

    Article  CAS  PubMed  Google Scholar 

  64. S. Armaković et al., Optical and bowl-to-bowl inversion properties of sumanene substituted on its benzylic positions; a DFT/TD-DFT study. Chem. Phys. Lett. 578, 156–161 (2013)

    Article  CAS  Google Scholar 

  65. S. Ito, Y. Tokimaru, K. Nozaki, Benzene-fused azacorannulene bearing an internal nitrogen atom. Angew. Chem. Int. Ed. 54(25), 7256–7260 (2015)

    Article  CAS  Google Scholar 

  66. X. Li, F. Kang, M. Inagaki, Buckybowls: corannulene and its derivatives. Small 12(24), 3206–3223 (2016)

    Article  CAS  PubMed  Google Scholar 

  67. Y. Shoji et al., Hexathioalkyl sumanenes: an electron-donating buckybowl as a building block for supramolecular materials. Chem. Sci. 8(12), 8405–8410 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. S. Mukherjee et al., Adsorption and diffusion of lithium polysulfides over blue phosphorene for Li–S batteries. Nanoscale 10(45), 21335–21352 (2018)

    Article  CAS  PubMed  Google Scholar 

  69. H. Sakurai, T. Daiko, T. Hirao, A synthesis of sumanene, a fullerene fragment. Science 301(5641), 1878 (2003)

    Article  CAS  PubMed  Google Scholar 

  70. S. Fujii et al., Bowl inversion and electronic switching of buckybowls on gold. J. Am. Chem. Soc. 138(37), 12142–12149 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the University Grants Commission, New Delhi, India, for providing funds to establish High Performance Computing facility, under the Center with Potential for Excellence in Particular Area (CPEPA) scheme [Grant 2-8/2016 (NS/PE) dated October 3, 2016].

Author information

Authors and Affiliations

Authors

Contributions

Meera Cheviri: conceptualization, methodology, formal analysis, writing—review and editing. Senthilkumar Lakshmipathi: conceptualization, methodology, formal analysis, writing—review and editing.

Corresponding author

Correspondence to Senthilkumar Lakshmipathi.

Ethics declarations

Ethics Statement

All the ethical guidelines have been adhered to.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13485 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheviri, M., Lakshmipathi, S. Nitrogen-Doped Buckybowls as Potential Scaffold Material for Lithium-Sulfur Battery: A DFT Study. Electrocatalysis 12, 678–690 (2021). https://doi.org/10.1007/s12678-021-00678-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00678-3

Keywords

Navigation