Skip to main content
Log in

In Situ Electrodeposited Gold Nanoparticles on Polyaniline-Modified Electrode Surface for the Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this study, in situ electrodeposition of gold nanoparticles (AuNPs) over polyaniline (PANI)-modified glassy carbon electrode (GCE) surface using linear sweep voltammetry (LSV) has been found to be more effective than cyclic voltammetry (CV). LSV prevents stripping of the Au atoms from the electrode surface, thus leading to an efficient loading of AuNPs on the PANI matrix. The reduction of Au over PANI-modified GCE occurs at 0.34 V and the amount of Au loaded using LSV for 15 linear sweep cycles is 54.75 × 10−9 g. Various techniques are employed to characterize the modified electrode surface. Fourier transform infrared spectroscopic studies show that the electroreduction of Au increases the quinoid moieties in PANI, and the X-ray diffraction data reveals the average crystallite size of AuNPs as 65 nm. The field emission scanning electron microscopy and atomic force microscopy analysis indicate the dispersion of spherical AuNPs over the PANI matrix. The electrochemical studies show enhanced electrocatalytic activity of the modified electrode surface at neutral pH, suitable for sensing biomolecule, dopamine (DA) amidst the interferences, ascorbic acid (AA), and uric acid (UA). The oxidation of DA reported to occur in the range of 0.270 V to 0.361 V for PANI-AuNPs based electrodes at neutral pH is lowered to 0.168 V at the modified electrode surface prepared electrochemically in the present study. The peak-to-peak separation for DA-AA and DA-UA is 108 mV and 345 mV, respectively, with the working linear range of 20–100 μM and a detection limit of 16 μM for DA. Such enhanced electrocatalytic response is attributed to a synergistic interaction between the PANI film and electrodeposited AuNPs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578-580 (1977). https://doi.org/10.1039/C39770000578

  2. K. Amano, H. Ishikawa, A. Kobayashi, M. Satoh, E. Hasegawa, Thermal stability of chemically synthesized polyaniline. Synth. Met. 62, 229–232 (1994). https://doi.org/10.1016/0379-6779(94)90210-0

    Article  CAS  Google Scholar 

  3. J.G. Masters, Y. Sun, A.G. MacDiarmid, A.G. Epstein, Polyaniline: allowed oxidation states. Synth. Met. 41, 715–718 (1991). https://doi.org/10.1016/0379-6779(91)91166-8

    Article  CAS  Google Scholar 

  4. J.C. Chiang, A.G. MacDiarmid, ‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 13, 193–205 (1986). https://doi.org/10.1016/0379-6779(86)90070-6

    Article  CAS  Google Scholar 

  5. S. Bhadra, S. Chattopadhyay, N.K. Singha, D. Khastgir, Improvement of conductivity of electrochemically synthesized polyaniline. J. Appl. Polym. Sci. 108, 57–64 (2008). https://doi.org/10.1002/app.26926

    Article  CAS  Google Scholar 

  6. M. Angelopoulos, Conducting polymers in microelectronics. IBM J. RES. & DEV. 45, 57–75 (2001). https://doi.org/10.1147/rd.451.0057

    Article  CAS  Google Scholar 

  7. S. Palaniappan, A. John, Conjugated polymers as heterogeneous catalyst in organic synthesis. Curr. Org. Chem. 12, 98–117 (2008). https://doi.org/10.2174/138527208783330037

    Article  CAS  Google Scholar 

  8. T. Sen, S. Mishra, N.G. Shimpi, Synthesis and sensing applications of polyaniline nanocomposites: a review. RSC Adv. 6, 42196–42222 (2016)

    Article  CAS  Google Scholar 

  9. I. Lee, Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosensors 2, 205–220 (2012). https://doi.org/10.3390/bios2020205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A.F. Diaz, J.A. Logan, Electroactive polyaniline films. J. Electroanal. Chem. 111, 111–114 (1980). https://doi.org/10.1016/S0022-0728(80)80081-7

    Article  CAS  Google Scholar 

  11. J. Yue, A.J. Epstein, Synthesis of self-doped conducting polyaniline. J. Am. Chem. Soc. 7, 2800–2801 (1990). https://doi.org/10.1021/ja00163a051

    Article  Google Scholar 

  12. P. N. Bartlett, P. R. Birkin, E. N. K. Wallace, Oxidation of β-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes. J. Chem. Soc. Faraday Trans. 93, 1951-1960 (1997). https://doi.org/10.1039/A700468K

  13. S. Tian, J. Liu, T. Zhu, W. Knoll, Polyaniline doped with modified gold nanoparticles and its electrochemical properties in neutral aqueous solution. Chem. Commun. 21, 2738–2739 (2003). https://doi.org/10.1039/B309646G

    Article  Google Scholar 

  14. S.A. Ansari, A. Ahmed, F.K. Ferdousi, Md.A. Salam, A.A. Shaikh, H.R. Barai, N.S. Lopa, Md.M. Rahman, Conducting poly(aniline blue)-gold nanoparticles composite modified fluorine-doped tin oxide electrode for sensitive and non-enzymatic electrochemical detection of glucose. J. Electroanal. Chem. 850, 113394–113394 (2019). https://doi.org/10.1016/j.jelechem.2019.113394

    Article  CAS  Google Scholar 

  15. K. Sadasivuni, D. Ponnamma, M. Rajan, B. Ahmed, M. Al-Maadeed, Silver Nanoparticles and Its Polymer Nanocomposites—Synthesis, Optimization, Biomedical Usage, and Its Various Applications. In: (eds) Polymer Nanocomposites in Biomedical Engineering. Lecture Notes in Bioengineering (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-04741-2_11

  16. J.M. Kinyanjui, J. Hanks, D.W. Hatchett, A. Smith, Chemical and electrochemical synthesis of polyaniline/gold composites. J. Electrochem. Soc. 151, D113–D120 (2004). https://doi.org/10.1149/1.1808593

    Article  CAS  Google Scholar 

  17. A. Soni, C.M. Pandey, S. Solanki, G. Sumana, One-pot synthesis of a polyaniline–gold nanocomposite and its enhanced electrochemical properties for biosensing applications. RSC Adv. 5, 45767–45774 (2015). https://doi.org/10.1039/C5RA06146F

    Article  CAS  Google Scholar 

  18. K. Mallick, M.J. Witcomb, A. Dinsmore, M.S. Scurrell, Polymerization of aniline by auric acid: formation of gold decorated polyaniline nanoballs. Macromol. Rapid Commun. 26, 232–235 (2005). https://doi.org/10.1002/marc.200400513

    Article  CAS  Google Scholar 

  19. D.W. Hatchett, M. Josowicz, J. Janata, Electrochemical formation of Au clusters in polyaniline. Chem. Mater. 10, 2989–2994 (1999). https://doi.org/10.1021/cm990365m

    Article  CAS  Google Scholar 

  20. L.E.I. Ting, Preparation of novel core-shell nanoparticles by electrochemical synthesis. Trans. Nonferrous Met. Soc. CHINA. 17, 1343–1346 (2007). https://doi.org/10.1016/S1003-6326(07)60274-X

    Article  Google Scholar 

  21. M. Hosseini, M.M. Momeni, M. Faraji, Electrochemical fabrication of polyaniline films containing gold nanoparticles deposited on titanium electrode for electro-oxidation of ascorbic acid. J. Mater. Sci. 45, 2365–2371 (2010). https://doi.org/10.1007/s10853-009-4202-4

    Article  CAS  Google Scholar 

  22. C.C. Huang, T.C. Wen, Y. Wei, Site-selective deposition of ultra-fine Au nanoparticles on polyaniline nanofibers for H2O2 sensing. Mater. Chem. Phys. 122, 392–396 (2010). https://doi.org/10.1016/j.matchemphys.2010.03.012

    Article  CAS  Google Scholar 

  23. S.-Y. Cui, S.-M. Park, Electrochemistry of conductive polymers XXIII: polyaniline growth studied by electrochemical quartz crystal microbalance measurements. Synth. Met. 105, 91–98 (1999)

    Article  CAS  Google Scholar 

  24. M. Guerra-Balcázar, R. Ortega, F. Castaneda, L.G. Arriaga, J. Ledesma-Garcia, Synthesis of Au nanoparticles/polyaniline composites by electroreduction for glucose oxidation. Int. J. Electrochem. Sci. 6, 4667–4675 (2011)

    Google Scholar 

  25. V. Mazeikoa, A. Kausaite-Minkstimienea, A. Ramanavicienea, Z. Balevicius, A. Ramanavicius, Gold nanoparticle and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design. Sens. Actuators B Chem. 189, 187–193 (2013). https://doi.org/10.1016/j.snb.2013.03.140

    Article  CAS  Google Scholar 

  26. Z. Miao, P. Wang, A. Zhong, M. Yang, Q. Xu, S. Hao, X. Hu, Development of a glucose biosensor based on electrodeposited gold nanoparticles-polyvinylpyrrolidone-polyaniline nanocomposites. J. Electroanal. Chem. 756, 153–160 (2015). https://doi.org/10.1016/j.jelechem.2015.08.025

    Article  CAS  Google Scholar 

  27. A. Wang, J. Feng, Y. Li, In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine. Microchim. Acta. 171, 431–436 (2010). https://doi.org/10.1007/s00604-010-0452-8

    Article  CAS  Google Scholar 

  28. M.O. Shaikh, B. Srikanth, P.-Y. Zhu, C.-H. Chuang, Impedimetric immunosensor utilizing polyaniline/gold nanocomposite-modified screen-printed electrodes for early detection of chronic kidney disease. Sensors (Basel). 19, 3990–3402 (2019). https://doi.org/10.3390/s19183990

    Article  CAS  PubMed Central  Google Scholar 

  29. R.S. Saberi, S. Shahrokhian, G. Marrazza, Amplified electrochemical DNA sensor based on polyaniline film and gold nanoparticles. Electroanalysis 25, 1373–1380 (2013). https://doi.org/10.1002/elan.201200434

    Article  CAS  Google Scholar 

  30. M. Sheffer, D. Mandler, Control of locally deposited gold nanoparticle on polyaniline films. Electrochim. Acta. 54, 2951–2956 (2009). https://doi.org/10.1016/j.electacta.2008.12.027

    Article  CAS  Google Scholar 

  31. E. Spain, T.E. Keyes, R.J. Forster, Vapour phase polymerised polyaniline- gold nanoparticle composites for DNA detection. J. Electroanal. Chem. 711, 38–44 (2013). https://doi.org/10.1016/j.jelechem.2013.08.023

    Article  CAS  Google Scholar 

  32. D.W. Hatchett, T. Quy, N. Goodwin, N.M. Millick, In situ reduction of Au, Pd, and Pt metal precursors in polyaniline: electrochemistry of variable metal content polymer/metal composites in alkaline solution. Electrochim. Acta. 251, 699–709 (2017). https://doi.org/10.1016/j.electacta.2017.08.120

    Article  CAS  Google Scholar 

  33. R. M. Wightman, C. Amatore, R. C. Engstrom, P. D. Hale, E. W. Kristensen, W. G. Kuhr, L. J. May, Real-time Characterization of Dopamine Overflow and Uptake in the Rat Striatum. Neuroscience. 25, 513-523 (1998). https://doi.org/10.1016/0306-4522(88)90255-2

  34. R.M. Wightman, L.J. May, A.C. Micheal, Detection of dopamine dynamics in the brain. Anal. Chem. 60, 769A-779A (1988). https://doi.org/10.1021/ac00164a001

    Article  CAS  PubMed  Google Scholar 

  35. R.R. Gonzalez, R.F. Fernandez, J.L.M. Vidal, A.G. Frenich, M.L.G. Perez, Development and validation of an ultra-high-performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. J. Neurosci Methods. 198, 187–194 (2011). https://doi.org/10.1016/j.jneumeth.2011.03.023

    Article  CAS  PubMed  Google Scholar 

  36. H. Aldewachi, T. Chalati, M.N. Woodroofe, N. Bricklebank, B. Sharrack, P. Gardiner, Gold nanoparticle-based colorimetric biosensors. Nanoscale. 10, 18–33 (2018). https://doi.org/10.1039/C7NR06367A

    Article  CAS  Google Scholar 

  37. H. Zhao, H. Mu, Y. Bai, H. Yu, H. Yu, A rapid method for the determination of dopamine in porcine muscle by pre-column derivatization and HPLC with fluorescence detection. J. Pharm. Anal. 1, 208–212 (2011). https://doi.org/10.1016/j.jpha.2011.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. G. Selvolini, C. Lazzarini, G. Marrazza, Electrochemical nanocomposite single-use sensor for dopamine detection. Sensors (Basel). 19, 3097–3098 (2019). https://doi.org/10.3390/s19143097

    Article  CAS  PubMed Central  Google Scholar 

  39. G. Fabregat, J. Casanovas, E. Redondo, E. Armelin, C. Alemán, A rational design for the selective detection of dopamine using conducting polymers. Phys. Chem. Chem. Phys. 16, 7850–7861 (2014). https://doi.org/10.1039/C4CP00234B

    Article  CAS  PubMed  Google Scholar 

  40. Lei Zhang, Xiue Jiang, Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine. J. Electroanal. Chem. 583, 292–299 (2005). https://doi.org/10.1016/j.jelechem.2005.06.014

    Article  CAS  Google Scholar 

  41. N.F. Atta, M.F. El-Kady, A. Galal, Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor. Anal. Biochem. 400, 78–88 (2010). https://doi.org/10.1016/j.ab.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  42. J. Mathiyarasu, S. Senthilkumar, K.L.N. Phani, V. Yegnaraman, Selective detection of dopamine using a functionalised polyaniline composite electrode. J. Appl. Electrochem. 35, 513–519 (2005). https://doi.org/10.1007/s10800-005-0914-6

    Article  CAS  Google Scholar 

  43. X. Feng, C. Mao, G. Yang, W. Hou, J.J. Zhu, Polyaniline/Au composite hollow spheres: synthesis, characterization, and application to the detection of dopamine. Langmuir 22, 4384–4389 (2006). https://doi.org/10.1021/la053403r

    Article  CAS  PubMed  Google Scholar 

  44. M.I. Prodromidis, A.B. Florou, S.M. Tzouwara-Karayanni, M.I. Karayannis, The importance of surface coverage in the electrochemical study of chemically modified electrodes. Electroanalysis. 12, 1498–1501 (2000). https://doi.org/10.1002/1521-4109(200012)12:18%3c1498::AID-ELAN1498%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  45. S. Trasatti, O.A. Petrii, Real surface area measurements in Electrochemistry. Pure Appl. Chem. 63, 711–734 (1991). https://doi.org/10.1351/pac199163050711

    Article  CAS  Google Scholar 

  46. S. Tawde, D. Mukesh, J.V. Yakhmi, Redox behavior of polyaniline as influenced by aromatic sulphonate anions: cyclic voltammetry and molecular modelling. Synth. Met. 125, 401–413 (2002). https://doi.org/10.1016/S0379-6779(01)00483-0

    Article  CAS  Google Scholar 

  47. M. Matsushita, H. Kuramitz, S. Tanaka, Electrochemical oxidation for low concentration of aniline in neutral pH medium: application to the removal of aniline based on the electrochemical polymerization on a carbon fiber. Environ. Sci. Technol. 39, 3805–3810 (2005). https://doi.org/10.1021/es040379f

    Article  CAS  PubMed  Google Scholar 

  48. J.M. Kinyanjui, D.W. Hatchett, Chemical synthesis of a polyaniline/gold composite using tetrachloroaurate. Chem. Mater. 16, 3390–3398 (2004). https://doi.org/10.1021/cm049478i

    Article  CAS  Google Scholar 

  49. M. Trchova, I. Sedenkova, E.N. Konyushenko, J. Stejskal, P. Holler, G. CÄiric-Marjanović, Evolution of Polyaniline Nanotubes: The Oxidation of Aniline in Water. J. Phys. Chem. B 110, 9461-9468 (2006). https://doi.org/10.1021/jp057528g

  50. M. Etesami, F.S. Karoonian, N. Mohamed, Electrochemical deposition of gold nanoparticles on pencil graphite by fast scan cyclic voltammetry. J. Chin. Chem. Soc. 58, 688–693 (2011)

    Article  CAS  Google Scholar 

  51. A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  52. H. Matsumoto, M. Yanagida, K. Tanimoto, M. Nomura, Y. Kitagawa, Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis (trifluoromethylsulfonyl) imide. Chem. Lett. 29(8), 922–923 (2000)

    Article  Google Scholar 

  53. L. Yang, S. Liu, Q. Zhang, F. Li, Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@polyaniline core–shell nanocomposites modified electrode. Talanta 89, 136–141 (2012). https://doi.org/10.1016/j.talanta.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  54. E. Laviron, The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes, J. Electroanal. Chem. 100, 263-270 (1979). https://doi.org/10.1016/S0022-0728(79)80167-9

  55. A.J. Wang, J.J. Feng, Y.F. Li, J.L. Xi, W.J. Dong, In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine. Microchim. Acta 171, 431–436 (2010). https://doi.org/10.1007/s00604-010-0452-8

    Article  CAS  Google Scholar 

  56. W. Chu, Q. Zhou, S. Li, W. Zhao, N. Li, J. Zheng, Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film. Appl. Surf. Sci. 353, 425–432 (2015). https://doi.org/10.1016/j.apsusc.2015.06.141

    Article  CAS  Google Scholar 

  57. S. Mahalakshmi, V. Sridevi, Conducting, crystalline and electroactive polyaniline-Au nanocomposites through combined acid and oxidative doping pathways for biosensing applications: Detection of dopamine. Mater. Chem. Phys. 235, 121728–121741 (2019). https://doi.org/10.1016/j.matchemphys.2019.121728

    Article  CAS  Google Scholar 

  58. A. Stoyanova, S. Ivanov, V. Tsakova, A. Bund, Au nanoparticle–polyaniline nanocomposite layers obtained through layer-by-layer adsorption for the simultaneous determination of dopamine and uric acid. Electrochim. Acta 56, 3693–3699 (2011). https://doi.org/10.1016/j.electacta.2010.09.054

    Article  CAS  Google Scholar 

  59. Y. Zhang, L. Lin, Z. Feng, J. Zhou, Z. Lin, Fabrication of a PANI/Au nanocomposite modified nanoelectrode for sensitive dopamine nanosensor design. Electrochim. Acta 55, 265–270 (2009). https://doi.org/10.1016/j.electacta.2009.08.048

    Article  CAS  Google Scholar 

  60. M.J. Song, S.K. Lee, J.H. Kim, D.S. Lim, Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposite in the presence of ascorbic acid. Anal. Sci. 28, 583–587 (2012). https://doi.org/10.2116/analsci.28.583

    Article  CAS  PubMed  Google Scholar 

  61. S. Prakash, C.R.K. Rao, M. Vijayan, Polyaniline–polyelectrolyte–gold (0) ternary nanocomposites: synthesis and electrochemical properties. Electrochim. Acta. 54, 5919–5927 (2009). https://doi.org/10.1016/j.electacta.2009.05.059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Science Instrumentation Centre, Lady Doak College, Madurai established and funded by University Grants Commission and Department of Science and Technology, India, in carrying out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sridevi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 261 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalakshmi, S., Sridevi, V. In Situ Electrodeposited Gold Nanoparticles on Polyaniline-Modified Electrode Surface for the Detection of Dopamine in Presence of Ascorbic Acid and Uric Acid. Electrocatalysis 12, 415–435 (2021). https://doi.org/10.1007/s12678-021-00665-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00665-8

Keywords

Navigation