Skip to main content

Advertisement

Log in

Theoretical Insight on Highly Efficient Electrocatalytic CO2 Reduction Reaction of Monoatom Dispersion Catalyst (Metal-Nitrogen-Carbon)

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

With the development of the economy, the greenhouse effect is becoming more and more serious, and the culprit is elected as carbon dioxide, so it is urgent to find an effective way to alleviate the greenhouse effect. The carbon dioxide electrochemical reduction reaction (CO2RR) can realize the resource conversion of carbon dioxide, which is the key technology to realize the natural “carbon cycle” and alleviate many environmental problems caused by excessive carbon dioxide emissions. Due to the excellent performance of metal nitrogen-doped carbon catalysts (M-N-C catalysts), in this letter, we choose M-N-C catalysts (M = a series of transition metals) to conduct a series of studies. We used the PBE method of density functional theory (DFT) to conduct a detailed study on the changes of the electroreduction of CO2 on M-N-C (M = Fe/Ni/Cu/Zn/Ru/Rh/Pd/Ag/Cd/Os/Ir/Pt/Au) catalysts, compare the catalytic performance of the selected nitrogen-doped metal carbon catalyst, and focus on simulating the mechanism of various CO2 electrochemical reduction reactions. The research points out that M-N-C (M = Ir) catalysts have good performance in catalyzing the reduction of carbon dioxide into carbon products with economic value, especially methane and methanol, and multicarbon products such as ethanol.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.A. Olah, G.K.S. Prakash, A. Goeppert, Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 133(33), 12881–12898 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. N.V.D. Assen, J. Jung, A. Bardow, Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ. Sci. 6(9), 2721–2734 (2013)

    Article  Google Scholar 

  3. K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136(40), 14107–14113 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energ. Environ. Sci. 5, 7050–7059 (2012)

    Article  CAS  Google Scholar 

  5. J. Zhang, X.M. Cao, P. Hu, Z. Zhong, A. Borgna, P. Wu, Density functional theory studies of ethanol decomposition on Rh(211). J. Phys. Chem. C. 115(45), 22429–22437 (2011)

    Article  CAS  Google Scholar 

  6. K. Jiang, S. Siahrostami, A.J. Akey, Y.B. Li, Z.Y. Lu, J. Lattimer, Y.F. Hu, C. Stokes, M. Gangishetty, G.X. Chen, Y.W. Zhou, W. Hill, W.B. Cai, D. Bell, K. Chan, J.K. Nørskov, Y. Cui, H.T. Wang, Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem. 3(6), 950–960 (2017)

    Article  CAS  Google Scholar 

  7. J. Hussain, H. Jonsson, E. Skulason, Calculations of product selectivity in electrochemical CO2 reduction. ACS Catal. 8(6), 5240–5249 (2018)

    Article  CAS  Google Scholar 

  8. A. Bagger, L. Arnarson, M.H. Hansen, E. Spohr, J. Rossmeisl, Electrochemical CO reduction: a property of the electrochemical interface. J. Am. Chem. Soc. 141(4), 1506–1514 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. J.M. Thomas, R. Raja, D.W. Lewis, Single-site heterogeneous catalysts. Angew. Chem. Int. Ed. 44(40), 6456–6482 (2005)

    Article  CAS  Google Scholar 

  10. X.F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Single-atom catalysts: a new Frontier in heterogeneous catalysis. Acc. Chem. Res. 46(8), 1740–1748 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Sci. 301(5635), 935–938 (2003)

    Article  CAS  Google Scholar 

  12. J.H. Kwak, J. Hu, D. Mei, C.W. Yi, D.H. Kim, C.H.F. Peden, L.F. Allard, J. Szanyi, Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Sci. 325(5948), 1670–1673 (2009)

    Article  CAS  Google Scholar 

  13. V. Tripkovic, M. Vanin, M. Karamad, M.E. Björketun, K.W. Jacobsen, K.S. Thygesen, J. Rossmeisl, Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C. 117(18), 9187–9195 (2013)

    Article  CAS  Google Scholar 

  14. J. He, Y. Shen, M. Yang, H. Zhang, Q. Deng, Y. Ding, The effect of surface strain on the CO-poisoned surface of Pt electrode for hydrogen adsorption. J. Catal. 350, 212–217 (2017)

    Article  CAS  Google Scholar 

  15. J.Y. Luo, Study of the catalyst poisoning and reactivation of Pt nanoparticles on the surface of WO3 nanowire in gasochromic coloration. Sensor. Actuat. B-Chem. 171–172, 1117–1124 (2012)

    Article  Google Scholar 

  16. H. Furukawa, S. Matsuda, S. Tanaka, S. Shironita, M. Umeda, CO2electroreduction characteristics of Pt-Ru/C powder and Pt-Ru sputtered electrodes under acidic condition. Appl. Surf. Sc. 434(15), 681–686 (2018)

    Article  CAS  Google Scholar 

  17. I. Kerbach, V. Climent, J.M. Feliu, Reduction of CO(2) on bismuth modified Pt(110) single-crystal surfaces. Effect of bismuth and poisoning intermediates on the rate of hydrogen evolution. Electrochim Acta. 56(12), 4451–4456 (2011)

  18. H.D. Jang, S.K. Kim, H. Chang, J.W. Choi, J. Luo, J. Huang, One-step synthesis of Pt-nanoparticles-laden graphene crumples by aerosol spray pyrolysis and evaluation of their electrocatalytic activity. Aerosol. Sci. Tech. 47(1), 93–98 (2013)

    Article  CAS  Google Scholar 

  19. Y. Wu, B. Rudshteyn, A. Zhanaidarova, J.D. Froehlich, W. Ding, C.P. Kubiak, V.S. Batista, Electrode-ligand interactions dramatically enhance CO2 conversion to CO by the [Ni(cyclam)](PF6)2 catalyst. ACS Catal. 7(8), 5282–5288 (2017)

    Article  CAS  Google Scholar 

  20. A.A. Peterson, J.K. Nørskov, Activity descriptors for CO2electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3(2), 251–258 (2012)

    Article  CAS  Google Scholar 

  21. T. Möller, W. Ju, A. Bagger, X. Wang, F. Luo, T.N. Thanh, A.S. Varela, J. Rossmeisl, P. Strasser, Efficient CO2 to CO electrolysis on solid Ni-N-C catalysts at industrial current densities. Energy Environ. Sci. 12(2), 640–647 (2019)

    Article  Google Scholar 

  22. Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 4(3), 1500286 (2017)

    Article  Google Scholar 

  23. M.D. Porosoff, S. Kattel, W. Li, P. Liu, J.G. Chen, Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides. Chem. Commun. 51(32), 6988–6991 (2015)

    Article  CAS  Google Scholar 

  24. A.J. Medford, A. Vojvodic, F. Studt, F. Abild-Pedersen, J.K. Nørskov, Corrigendum to "Elementary steps of syngas reactions on Mo2C(001): adsorption thermochemistry and bond dissociation. J. Catal. 290, 108–117 (2012)

    Article  CAS  Google Scholar 

  25. S.K. Kim, Y.J. Zhang, H. Bergstrom, R. Michalsky, A. Peterson, Understanding the low-overpotential production of CH4 from CO2 on Mo2C catalysts. ACS Catal. 6(3), 2003–2013 (2016)

    Article  CAS  Google Scholar 

  26. S. Wannakao, N. Artrith, J. Limtrakul, A.M. Kolpak, Engineering transition-metal-coated tungsten carbides for efficient and selective electrochemical reduction of CO2 to methane. Chemsuschem 8(16), 2745–2751 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. A. Mahammed, Z. Gross, Metallocorroles as electrocatalysts for the oxygen reduction reaction (ORR). Isr. J. Chem. 56(9), 756–762 (2016)

    Article  CAS  Google Scholar 

  28. X.F. Zhang, Tetrabenzotriazacorrole: its synthesis, reactivity, physical properties, and applications. Coord. Chem. Rev. 285(15), 52–64 (2015)

    Article  CAS  Google Scholar 

  29. Z. Gross, H.B. Gray, Oxidations catalyzed by metallocorroles. Adv. Synth. Catal. 346(2–3), 165–170 (2004)

    Article  CAS  Google Scholar 

  30. M.M. Abu-Omar, High-valent iron and manganese complexes of corrole and porphyrin in atom transfer and dioxygen evolving catalysis. Dalton Trans. 40(24), 3435–3444 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. I. Aviv, Z. Gross, Corrole-based applications. Chem. Commun. 38(35), 1987–1999 (2007)

    Article  Google Scholar 

  32. H.Y. Liu, F. Yam, Y.T. Xie, X.Y. Li, C.K. Chang, A bulky Bis-pocket manganese(V)-Oxo corrole complex: observation of oxygen atom transfer between triply bonded MnV≡O and alkene. J. Am. Chem. Soc. 131(36), 12890–12891 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. K.E. Thomas, A.B. Alemayehu, J. Conradie, C.M. Beavers, A. Ghosh, The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights. Acc. Chem. Res. 45(8), 1203–1214 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. C.M. Lemon, P.J. Brothers, The synthesis, reactivity, and peripheral functionalization of corroles. J. Porphyr. Phthalocyanines 15(9–10), 809–834 (2011)

    Article  CAS  Google Scholar 

  35. S. Yamazaki, Metalloporphyrins and related metallomacrocycles as electrocatalysts for use in polymer electrolyte fuel cells and water electrolyzers. Coord. Chem. Rev. 373(15), 148–166 (2018)

    Article  CAS  Google Scholar 

  36. Z. Gross, High-valentcorrole metal complexes. J. Biol. Inorg. Chem. 6, 733–738 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. D.T. Gryko, J.P. Fox, D.P. Goldberg, Recent advances in the chemistry of corroles and core-modified corroles. J. Porphyr. Phthalocyanines. 8(9), 1091–1105 (2004)

    Article  CAS  Google Scholar 

  38. X. Liu, A. Mahammed, U. Tripathy, Z. Gross, R.P. Steer, Photophysics of Soret-excited tetrapyrroles in solution. III. Porphyrin analogues: Aluminum and gallium corroles. Chem. Phys. Lett. 459(1–6), 113–118 (2008)

  39. K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H. Wang, Isolated Ni single atoms in graphenenanosheets for high-performance CO2 reduction. Energy. Environ. Sci. 11, 893–903 (2018)

    Article  CAS  Google Scholar 

  40. X.M. Hu, H.H. Hval, E.T. Bjerglund, K.J. Dalgaard, M.R. Madsen, M.M. Pohl, E. Welter, P. Lamagni, K.B. Buhl, M. Bremholm, M. Beller, S.U. Pedersen, T. Skrydstrup, K. Daasbjerg, Selective CO2 reduction to CO in water using Earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal. 8(7), 6255–6264 (2018)

    Article  CAS  Google Scholar 

  41. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian 09, Revision A.1, Gaussian, Wallingford, CT. (2009)

  42. P.J. Hay, W.R. Wadt, Ab initio Effective core potentials for molecular calculations-potentials for the transition-metal atoms Sc to Hg. J. Chem. Phys. 82(1), 270–283 (1985)

    Article  CAS  Google Scholar 

  43. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 108(46), 17886–17892 (2004)

    Article  Google Scholar 

  44. A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energ. Environ. Sci. 3(9), 1311–1315 (2010)

    Article  CAS  Google Scholar 

  45. M.D. Bronshtein, R.R. Nazmutdinov, W. Schmickler, An approach to optimised calculations of the potential energy surfaces for the case of electron transfer reactions at a metal/solution interface. Chem. Phys. Lett. 399(4–6), 307–314 (2004)

    Article  CAS  Google Scholar 

  46. A. Ignaczak, R. Nazmutdinov, A. Goduljan, M.D.C.P. Leandro, F. Juarez, P. Quaino, E. Santos, W. Schmickler, A scenario for oxygen reduction in alkaline media. Nano Energy 26, 558–564 (2016)

    Article  CAS  Google Scholar 

  47. H. Zhong, F. Meng, Q. Zhang, K. Liu, X. Zhang, Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. Nano Res. 12(9), 2318–2323 (2019)

    Article  CAS  Google Scholar 

  48. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta. 39(11–12), 1833–1839 (1994)

    Article  CAS  Google Scholar 

  49. F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T. Munter, P.G. Moses, E. Skulason, T. Bligaard, J.K. Nørskov, Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99(1), 016105 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. B. Hammer, J. Norskov, Why gold is the noblest of all the metals. Nature 376(6537), 238–240 (1995)

    Article  CAS  Google Scholar 

  51. A.S. Varela, N.R. Sahraie, J. Steinberg, W. Ju, H.S. Oh, P. Strasser, Metal-Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO2 Electroreduction to CO and Hydrocarbons. Angew. Chem. Int. Ed. 54(37), 10758−10762 (2015)

  52. P. Hirunsit, W. Soodsawang, J. Limtrakul, CO2 Electrochemical reduction to methane and methanol on copper-based alloys: theoretical insight. J. Phys. Chem. C. 119(15), 8238–8249 (2015)

    Article  CAS  Google Scholar 

  53. S. Back, H. Kim, Y. Jung, Selective heterogeneous CO2electroreduction to methanol. ACS Catal. 5(2), 965–971 (2015)

    Article  CAS  Google Scholar 

  54. M.E. Dry, High quality diesel via the Fischer-Tropsch process—a review. J. Chem. Technol. Biotechnol. 77(1), 43–50 (2002)

    Article  CAS  Google Scholar 

  55. Y. Li, H. Su, S.H. Chan, Q. Sun, CO2Electroreduction performance of transition metal dimers supported on graphene: a theoretical study. ACS Catal. 5(11), 6658–6664 (2015)

    Article  CAS  Google Scholar 

  56. S. Back, Y. Jung, TiC- and TiN-supported single-atom catalysts for dramatic improvements in CO2 electrochemical reduction to CH4. ACS Energy Lett. 2(5), 969–975 (2017)

    Article  CAS  Google Scholar 

  57. R. Tanaka, M. Yamashita, K. Nozaki, Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J. Am. Chem. Soc. 131(40), 14168–14169 (2009)

    Article  CAS  PubMed  Google Scholar 

  58. X. Liu, Z. Wang, Y. Tian, J. Zhao, Graphdiyne-supported single iron atom: a promising electrocatalyst for carbon dioxide electroreduction into methane and ethanol. J. Phys. Chem. C. 124(6), 3722–3730 (2020)

    Article  CAS  Google Scholar 

  59. W.J. Durand, A.A. Peterson, F. Studt, F. Abild-Pedersen, J.K. Nørskov, Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci. 605(15–16), 1354–1359 (2011)

    Article  CAS  Google Scholar 

  60. P. Hirunsit, Electroreduction of carbon dioxide to methane on copper, copper-silver, and copper-gold catalysts: a DFT study. J. Phys. Chem. C. 117(16), 8262–8268 (2013)

    Article  CAS  Google Scholar 

  61. Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata, Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B. 101(36), 7075–7081 (1997)

    Article  CAS  Google Scholar 

  62. D.W. DeWulf, T. Jin, A.J. Bard, The Electrochemical Society, find out more Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions. J. Electrochem. Soc. 136(6), 1686–1691 (1989)

    Article  CAS  Google Scholar 

  63. Y. Hori, A. Murata, R. Takahashi, S. Suzuki, Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J. Am. Chem. Soc. 109(16), 5022–5023 (1987)

    Article  CAS  Google Scholar 

  64. H. Hansen, C. Shi, A. Lausche, A. Peterson, J. Nørskov, Bifunctional alloys for the electroreduction of CO2 and CO. Phys. Chem. Chem. Phys. 18(13), 9194–9201 (2016)

    Article  CAS  PubMed  Google Scholar 

  65. F.H.B. Lima, J. Zhang, M.H. Shao, K. Sasaki, M.B. Vukmirovic, E.A. Ticianelli, R.R. Adzic, Catalytic activity - D-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J. Phys. Chem. C. 111(1), 404–410 (2007)

    Article  CAS  Google Scholar 

  66. J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. J. Nat. Chem. 1(1), 37–46 (2009)

    Article  CAS  Google Scholar 

  67. X. Liu, P. Schlexer, J. Xiao,; Y. Ji, L. Wang, R.B. Sandberg, M. Tang, K.S. Brown, H. Peng, S. Ringe, C. Hahn, T.F. Jaramillo, J.K. Nørskov, K. Chan, pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10(1), 32 (2019)

  68. K.J.P. Schouten, Z. Qin, E.P. Gallent, M.T.M. Koper, Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134(24), 9864–9867 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. F. Calle-Vallejo, M.T.M. Koper, Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52(28), 7282–7285 (2013)

    Article  CAS  Google Scholar 

  70. Y. Liu, S. Chen, X. Quan, H. Yu, Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137(36), 11631–11636 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. Y. Liu, X. Fan, A. Nayak, Y. Wang, B. Shan, X. Quan, T.J. Meyer, Steering CO2electroreduction toward ethanol production by a surface-bound rupolypyridylcarbene catalyst on N-doped porous carbon. P. Natl. Acad. Sci. 116(52), 201907740 (2019)

    Article  Google Scholar 

  72. O.S. Bushuyev, P.D. Luna, C.T. Dinh, L. Tao, G. Saur, J.V.D. Lagemaat, S.O. Kelley, E.H. Sargent, What should we make with CO2 and how can we make it. Joule. 2(5), 825–832 (2018)

    Article  CAS  Google Scholar 

  73. C.G. Morales-Guio, E.R. Cave, S.A. Nitopi, J.T. Feaster, L. Wang, K.P. Kuhl, A. Jackson, N.C. Johnson, D.N. Abram, T. Hatsukade, C. Hahn, T.F. Jaramillo, Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018)

    Article  CAS  Google Scholar 

  74. X. Du, M.A. Carriquiry, Flex-fuel vehicle adoption and dynamics of ethanol prices: lessons from Brazil. Energ. Policy. 59, 507–512 (2013)

    Article  Google Scholar 

  75. R. Kortlever, J. Shen, K.J. Schouten, F. Calle-Vallejo, M.T. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6(20), 4073–4082 (2015)

    Article  CAS  PubMed  Google Scholar 

  76. Q. Fan, M. Zhang, M. Jia, S. Liu, J. Qiu, Z. Sun, Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy. 10, 280–301 (2018)

    Article  Google Scholar 

  77. Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S.Z. Qiao, Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141(19), 7646–7659 (2019)

    Article  CAS  PubMed  Google Scholar 

  78. A.S. Varela, W. Ju, A. Bagger, P. Franco, J. Rossmeisl, P. Strasser, Electrochemical reduction of CO2 (CO2RR) on metal-nitrogen-doped carbon (MNC) catalysts. ACS Catal. 9(8), 7270–7284 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the “1331” project of Shanxi Province, High School 131 Leading Talent Project of Shanxi, the Natural Science Foundation of Shanxi, and Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province, Graduate student innovation project of Shanxi Normal University(2019XSY021). Shanxi Graduate Education Innovation Project(2020SY331, 2020SY333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Guo, L., Han, Y. et al. Theoretical Insight on Highly Efficient Electrocatalytic CO2 Reduction Reaction of Monoatom Dispersion Catalyst (Metal-Nitrogen-Carbon). Electrocatalysis 12, 390–402 (2021). https://doi.org/10.1007/s12678-021-00662-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00662-x

Keywords

Navigation