Skip to main content
Log in

Highly Stable PtPdCu Alloy Nanowire Networks as Oxygen Reduction Electrocatalysts

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Advancing heteroatomic interactions via alloying or tuning morphology of catalyst is essential to enhance electrocatalytic activity and stability. The multi-metallic PtPdCu nanowire networks (NWs) have been successfully fabricated with a facile approach. The as-prepared PtPdCu NWs possessed rough surface structure, high aspect ratio, and admirable alloy properties. The trimetallic PtPdCu/C catalyst exhibited the highest electrocatalytic properties, with a specific activity and mass activity (total mass of (Pt + Pd)) of 7 times and 3 times higher than that of commercial Pt/C for oxygen reduction reaction (ORR). The mass activity of as-synthesized PtPdCu/C NWs only lost 12% after the accelerated durability test of 10,000 cycles, presenting an excellent long-term stability for ORR compared to that of commercial Pt/C and PtPd/C NWs. Furthermore, the NW-based catalyst system also well tolerated to catalyst poisoning. The ternary-composited PtPdCu/C NWs exhibited superior electrocatalytic properties, which have favorable application prospects in fuel cells.

Graphical Abstract

The multi-metallic PtPdCu nanowire networks (NWs) have been successfully fabricated with a facile approach. The as-prepared PtPdCu NWs possessed rough surface structure, high aspect ratio, and admirable alloy properties. The trimetallic PtPdCu/C catalyst exhibited the highest electrocatalytic properties, with a specific activity and mass activity (total mass of (Pt + Pd)) of 7 times and 3 times higher than that of commercial Pt/C for oxygen reduction reaction (ORR). The mass activity of as-synthesized PtPdCu/C NWs only lost 12% after the accelerated durability test of 10,000 cycles, presenting an excellent long-term stability for ORR compared to that of commercial Pt/C and PtPd/C NWs. Furthermore, the NWs-based catalyst system also well tolerated to catalyst poisoning. The ternary-composited PtPdCu/C NWs exhibited superior electrocatalytic properties, which have favorable application prospects in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.N. Tiwari, R.N. Tiwari, G. Singh, K.S. Kim, Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nanoscale 2(5), 553–578 (2013). https://doi.org/10.1016/j.nanoen.2013.06.009

    Article  CAS  Google Scholar 

  2. X. Shi, Y. Wen, X. Guo, Y. Pan, Y. Ji, Y. Ying, H. Yang, Dentritic CuPtPd catalyst for enhanced electrochemical oxidation of methanol. ACS Appl. Mater. 9(31), 25995–26000 (2017). https://doi.org/10.1021/acsami.7b06296

    Article  CAS  Google Scholar 

  3. M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43–51 (2012). https://doi.org/10.1038/nature11115

    Article  CAS  PubMed  Google Scholar 

  4. D. Banham, S.Y. Ye, Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett. 2(3), 629–638 (2017). https://doi.org/10.1021/acsenergylett.6b00644

    Article  CAS  Google Scholar 

  5. X.Q. Huang, Z.P. Zhao, L. Cao, Y. Chen, E.B. Zhu, Z.Y. Lin, M.F. Li, A.M. Yan, A. Zettl, Y.M. Wang, X.F. Duan, T. Mueller, Y. Huang, High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348(6240), 1230–1234 (2015). https://doi.org/10.1126/science.aaa8765

    Article  CAS  PubMed  Google Scholar 

  6. J.Y. Chen, B. Lim, E.P. Lee, Y.N. Xia, Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4(1), 81–95 (2009). https://doi.org/10.1016/j.nantod.2008.09.002

    Article  CAS  Google Scholar 

  7. L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li, J. Yao, T. Wu, G. Lu, J.Y. Ma, D. Su, X. Huang, Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354(6318), 1410–1414 (2016). https://doi.org/10.1126/science.aah6133

    Article  CAS  PubMed  Google Scholar 

  8. H.I. Karunadasa, E. Montalvo, Y.J. Sun, M. Majda, J.R. Long, C.J. Chang, A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069), 698–702 (2012). https://doi.org/10.1126/science.1215868

    Article  CAS  PubMed  Google Scholar 

  9. H.J. Wang, S.L. Yin, Y. Xu, X.N.A. Li, A.A. Alshehri, Y. Yamauchi, H.R. Xue, Y.V. Kaneti, L. Wang, Direct fabrication of tri-metallic PtPdCu tripods with branched exteriors for the oxygen reduction reaction. J. Mater. Chem. A 6(18), 8662–8668 (2018). https://doi.org/10.1039/C8TA01698D

    Article  CAS  Google Scholar 

  10. W.D. Zhang, Q.Z. Dong, H.Z. Lu, B.N. Hu, Y. Xie, G. Yu, Glucose-directed synthesis of Pt-Cu alloy nanowires networks and their electro-catalytic performance for ethylene glycol oxidation. J. Alloys Compd. 727, 475–483 (2017). https://doi.org/10.1016/j.jallcom.2017.06.205

    Article  CAS  Google Scholar 

  11. S.F. Fu, C.Z. Zhu, D. Du, Y.H. Lin, Facile one-step synthesis of three-dimensional Pd-Ag bimetallic alloy networks and their electrocatalytic activity toward ethanol oxidation. ACS Appl. Mater. Interfaces 7(25), 13842–13848 (2015). https://doi.org/10.1021/acsami.5b01963

    Article  CAS  PubMed  Google Scholar 

  12. D.-Y. Wang, H.-L. Chou, Y.-C. Lin, F.-J. Lai, C.-H. Chen, J.-F. Lee, B.-J. Hwang, C.-C. Chen, Simple replacement reaction for the preparation of ternary Fe1–x PtRu x nanocrystals with superior catalytic activity in methanol oxidation reaction. J. Am. Chem. Soc. 134(24), 10011–10020 (2012). https://doi.org/10.1021/ja3010754

    Article  CAS  PubMed  Google Scholar 

  13. H.J. Freund, G. Meijer, M. Scheffler et al., CO oxidation as a prototypical reaction for heterogeneous processe. Angew. Chem. Int. Ed. 50(43), 10064–10094 (2011). https://doi.org/10.1002/anie.201101378

    Article  CAS  Google Scholar 

  14. J. Lin, X. Wang, T. Zhang, Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures. Chin. J. Catal. 37(11), 1805–1813 (2016). https://doi.org/10.1016/S1872-2067(16)62513-5

    Article  CAS  Google Scholar 

  15. H. Zhang, M. Jin, Y. Xia, Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41(24), 8035–8049 (2012). https://doi.org/10.1039/c2cs35173k

    Article  CAS  PubMed  Google Scholar 

  16. S.Y. Ma, H.H. Li, B.C. Hu, X. Cheng, Q.Q. Fu, S.H. Yu, Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 139(16), 5890–5895 (2017). https://doi.org/10.1021/jacs.7b01482

    Article  CAS  PubMed  Google Scholar 

  17. H.H. Li, S. Zhao, M. Gong, C.H. Cui, D. He, H.W. Liang, L. Wu, S.H. Yu, Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem. Int. Ed. Engl. 52(29), 7472–7476 (2013). https://doi.org/10.1002/ange.201302090

    Article  CAS  PubMed  Google Scholar 

  18. O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya, K.-I. Ota, New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. Electrochem. Commun. 6(2), 105–109 (2004). https://doi.org/10.1016/j.elecom.2003.10.020

    Article  CAS  Google Scholar 

  19. L. Sun, H. Wang, K. Eid, S.M. Alshehri, V. Malgras, Y. Yamauchi, L. Wang, One-step synthesis of dendritic bimetallic PtPd nanoparticles on reduced graphene oxide and its electrocatalytic properties. Electrochim. Acta 188, 845–851 (2016). https://doi.org/10.1002/ange.201302090

    Article  CAS  Google Scholar 

  20. Y. Lu, Y. Jiang, W. Chen, PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2(5), 836–844 (2013). https://doi.org/10.1016/j.nanoen.2013.02.006

    Article  CAS  Google Scholar 

  21. L. Sun, Z. Zhang, B. Xu, X. Wang, One-pot, template-free synthesis of Pd Pt single-crystalline hollow cubes with enhanced catalytic activity. Chemistry 8(7), 1523–1529 (2013). https://doi.org/10.1002/asia.201300352

    Article  CAS  Google Scholar 

  22. C. Shang, Y. Guo, E. Wang, Facile fabrication of PdRuPt nanowire networks with tunable compositions as efficient methanol electrooxidation catalysts. Nano Res. 11, 4348–4355 (2018). https://doi.org/10.1007/s12274-018-2022-z

    Article  CAS  Google Scholar 

  23. A.X. Yin, X.Q. Min, W. Zhu, W.C. Liu, Y.W. Zhang, C.H. Yan, Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chemistry 18(3), 777–782 (2012). https://doi.org/10.1002/chem.201102632

    Article  CAS  PubMed  Google Scholar 

  24. S.J. Guo, S. Zhang, X.L. Sun, S.H. Sun, Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc. 133(39), 15354–15357 (2011). https://doi.org/10.1021/ja207308b

    Article  CAS  PubMed  Google Scholar 

  25. Y. Liao, G. Yu, Y. Zhang, T.T. Guo, F.F. Chang, C.J. Zhong, Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J. Phys. Chem. C 120(19), 10476–10484 (2016). https://doi.org/10.1021/acs.jpcc.6b02630

    Article  CAS  Google Scholar 

  26. C.-T. Hsieh, J.-Y. Lin, Fabrication of bimetallic Pt–M (M= Fe Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells. J. Power Sources 188(2), 347–352 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.031

    Article  CAS  Google Scholar 

  27. Y. Hori, A. Murata, Y. Yoshinami, Adsorption of CO, intermediately formed in electrochemical reduction of CO 2, at a copper electrode. J. Chem. Soc. Faraday Trans. 87(16), 125–128 (1991). https://doi.org/10.1002/chin.199116020

    Article  CAS  Google Scholar 

  28. L. Schimka, J. Harl, A. Stroppa, A. Gruneis, M. Marsman, F. Mittendorfer, G. Kresse, Accurate surface and adsorption energies from many-body perturbation theory. Nat. Mater. 9(9), 741–744 (2010). https://doi.org/10.1038/nmat2806

    Article  CAS  PubMed  Google Scholar 

  29. J. Mondal, A. Biswas, S. Chiba, Y. Zhao, Cu(0) nanoparticles deposited on nanoporous polymers: a recyclable heterogeneous nanocatalyst for Ullmann coupling of aryl halides with amines in water. Sci. Rep. 5, 8294 (2015). https://doi.org/10.1038/srep08294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. G. Evano, N. Blanchard, M. Toumi, Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev. 108(8), 3054–3131 (2008). https://doi.org/10.1021/cr8002505

    Article  CAS  PubMed  Google Scholar 

  31. G.R. Zhang, S. Wollner, Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions. Appl Catal B-Environ 222, 26–34 (2018). https://doi.org/10.1016/j.apcatb.2017.09.066

    Article  CAS  Google Scholar 

  32. Z.Y. Liu, X.Y. Yang, B.Q. Lu, Z.P. Shi, D.M. Sun, L. Xu, Y.W. Tang, S.H. Sun, Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis. Appl Catal B. Environ. 243, 86–93 (2019). https://doi.org/10.1016/j.apcatb.2018.10.028

    Article  CAS  Google Scholar 

  33. Z. Daşdelen, Y. Yıldız, S. Eriş, F. Şen, Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl Catal B. Environ. 219, 511–516 (2017). https://doi.org/10.1016/j.apcatb.2017.08.014

    Article  CAS  Google Scholar 

  34. C.Y. Zhai, H.M. Zhang, J.Y. Hu, L.X. Zeng, M.Q. Xue, Y.K. Du, M.S. Zhu, Enhanced formic acid electrooxidation reaction enabled by 3D PtCo nanodendrites electrocatalyst. J. Alloys Compd. 774, 274–281 (2019). https://doi.org/10.1016/j.jallcom.2018.09.357

    Article  CAS  Google Scholar 

  35. Z. Chen, Y.C. He, J.H. Chen, X.Z. Fu, R. Sun, Y.X. Chen, C.P. Wong, PdCu alloy flower-like nanocages with high electrocatalytic performance for methanol oxidation. J. Phys. Chem. C 122(16), 8976–8983 (2018). https://doi.org/10.1021/acs.jpcc.8b01095

    Article  CAS  Google Scholar 

  36. F. Chang, S. Shan, V. Petkov, Z. Skeete, A. Lu, J. Ravid, J. Wu, J. Luo, G. Yu, Y. Ren, C.J. Zhong, Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis. J. Am. Chem. Soc. 138(37), 12166–12175 (2016). https://doi.org/10.1021/jacs.6b05187

    Article  CAS  PubMed  Google Scholar 

  37. X. Zhao, J. Zhang, L. Wang, H.X. Li, Z. Liu, W. Chen, Ultrathin PtPdCu nanowires fused porous architecture with 3D molecular accessibility: an active and durable platform for methanol oxidation. ACS Appl Mater Inter. 7(47), 26333–26339 (2015). https://doi.org/10.1021/acsami.5b09357

    Article  CAS  Google Scholar 

  38. N.T. Khi, J. Park, H. Baik, H. Lee, J.H. Sohn, K. Lee, Facet-controlled 100}Rh-Pt and {100}Pt-Pt dendritic nanostructures by transferring the {100 facet nature of the core nanocube to the branch nanocubes. Nanoscale 7(9), 3941–3946 (2015). https://doi.org/10.1039/c4nr07049f

    Article  CAS  PubMed  Google Scholar 

  39. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H.L. Xin, J.D. Snyder, D. Li, J.A. Herron, M. Mavrikakis, M. Chi, K.L. More, Y. Li, N.M. Markovic, G.A. Somorjai, P. Yang, V.R. Stamenkovic, Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343(6177), 1339–1343 (2014). https://doi.org/10.1126/science.1249061

    Article  CAS  PubMed  Google Scholar 

  40. W. Wang, D. Wang, X. Liu, Q. Peng, Y. Li, Pt-Ni nanodendrites with high hydrogenation activity. Chem. Commun. 49(28), 2903–2905 (2013). https://doi.org/10.1039/c3cc40503f

    Article  CAS  Google Scholar 

  41. X. Xu, X. Zhang, H. Sun, Y. Yang, X. Dai, J. Gao, X. Li, P. Zhang, H.H. Wang, N.F. Yu, S.G. Sun, Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. Engl. 53(46), 12522–12527 (2014). https://doi.org/10.1002/anie.201406497

    Article  CAS  PubMed  Google Scholar 

  42. P. Wang, Y. Zhang, R. Shi, Z. Wang, Trimetallic PtPdCu nanowires as an electrocatalyst for methanol and formic acid oxidation. New J. Chem. 42(23), 19083–19089 (2018). https://doi.org/10.1039/c8nj04723e

    Article  CAS  Google Scholar 

  43. C. Shang, W. Hong, Y. Guo, J. Wang, E. Wang, One-Step Synthesis of Platinum Nanochain Networks toward Methanol Electrooxidation. ChemElectroChem 3(5), 2093–2099 (2016)

    Article  CAS  Google Scholar 

  44. H. Yang, T. Chen, H. Wang, S. Bai, X. Guo, One-pot rapid synthesis of high aspect ratio silver nanowires for transparent conductive electrodes. Mater. Res. Bull. 102(5), 79–85 (2018). https://doi.org/10.1016/j.materresbull.2018.02.010

    Article  CAS  Google Scholar 

  45. H.H. Li, S. Zhao, M. Gong, C.H. Cui, D. He, H.W. Liang, L. Wu, S.H. Yu, Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem. 52(29), 7472–7476 (2013). https://doi.org/10.1002/anie.201302090

    Article  CAS  Google Scholar 

  46. C.K. Poh, Z. Tian, J. Gao, Z. Liu, J. Lin, Y.P. Feng, F. Su, Nanostructured trimetallic Pt/FeRuC, Pt/NiRuC, and Pt/CoRuC catalysts for methanol electrooxidation. J. Phys. Chem. 22(27), 13643 (2012). https://doi.org/10.1039/c2jm31956j

    Article  CAS  Google Scholar 

  47. Z. Xu, C. Sheng, F. Zhicheng, D. Jia, S. Wei, W. Youcheng, Z. Jin, P. Zhenmeng, Z. Jie, Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. J Am Chem Soc 137(8), 2804–2807 (2015). https://doi.org/10.1021/ja511596c

    Article  CAS  Google Scholar 

  48. R. Chang, L.J. Zheng, C.W. Wang, D.C. Yang, G.X. Zhang, S.H. Sun, Synthesis of hierarchical platinum-palladium-copper nanodendrites for efficient methanol oxidation. Appl. Catal. B 211, 205–211 (2017). https://doi.org/10.1016/j.apcatb.2017.04.040

    Article  CAS  Google Scholar 

  49. H.M. An, Z.L. Zhao, Q. Wang, L.Y. Zhang, M. Gu, C.M. Li, Ternary PtPdCu multicubes as a highly active and durable catalyst toward the oxygen reduction reaction. Chemelectrochem 5(10), 1345–1349 (2018). https://doi.org/10.1002/celc.201800202

    Article  CAS  Google Scholar 

  50. Z.Y. Duan, G.F. Wang, Comparison of reaction energetics for oxygen reduction reactions on Pt(100), Pt(111), Pt/Ni(100), and Pt/Ni(111) surfaces: a first-principles study. J. Phys. Chem. C 117(12), 6284–6292 (2013). https://doi.org/10.1021/jp400388v

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21476066, 51271074), and Fundamental Research Funds for the Central Universities from Hunan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihui Xie, Song Liu or Gang Yu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3703 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Kong, Z., Yang, Y. et al. Highly Stable PtPdCu Alloy Nanowire Networks as Oxygen Reduction Electrocatalysts. Electrocatalysis 12, 372–380 (2021). https://doi.org/10.1007/s12678-021-00656-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00656-9

Keywords

Navigation