Skip to main content
Log in

Performance of Pd@FeCo Catalyst in Anion Exchange Membrane Alcohol Fuel Cells

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The performances of the core-shell nano-electrocatalysts (FeCo@Fe@Pd/CNT-OH and their monometallic Pd counterparts (Pd/CNT-OH) on carbon nanotubes in passive and active direct methanol fuel cells (DMFCs) and direct ethanol fuel cells (DEFCs) have been studied. The direct alcohol alkaline fuel cell (DAAFCs) performances of the two nanocatalysts studied revealed the outstanding performances of the core shell, FeCo@Fe@Pd catalysts over the single Pd metal on the same substrates. A fourfold increase in power density value was observed in the DEFC while a threefold increase was seen in the DMFC while operating both passive DAAFCs at moderate temperatures using the core shell nanocatalysts. The core-shell-modified electrode also gave an exceptional activity of over 50% columbic efficiency in comparison with its Pd counterpart in the passive DEFC. Density functional theory calculations carried out to further comprehend the electrocatalytic oxidation of the nanocatalysts towards both methanol and ethanol fuels corroborated the experimental findings. An increase in the readily available electrons of the partially filled d-orbitals was found to be involved in the catalytic reactions on the surface of the FeCo@Fe@Pd/CNT-OH core shell catalysts as opposed to those of the p-orbitals of Pd/CNT-OH, thus enhancing its catalytic activities in both DAAFCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Antolini, E.R. Gonzalez Alkaline direct alcohol fuel cells. J. Power Sources 195, 3431–3450 (2010)

  2. C. Bianchini, P.K. Shen, Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 109, 4183–4206 (2009)

    Article  CAS  Google Scholar 

  3. N. Thantakorn , Yi Cheng, L. Shanfu , P. Kunakorn, P. Kejvalee, J. San Ping, Unusual synergetic effect of nickel single atoms on the electrocatalytic activity of palladium for alcohol oxidation reactions in alkaline media. Chem. Commun. 54, 12404–12407 (2018)

  4. Z. Chen, Y. Liu, C. Liu, J. Zhang, Y. Chen, W. Hu, Y. Deng, Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. Sci. China Mater. (2020). https://doi.org/10.1007/s40843-020-1460-y

    Article  Google Scholar 

  5. C. Koenigsmann, S.S. Wong, One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy Environ. Sci. 4, 1161–1176 (2011)

    Article  CAS  Google Scholar 

  6. S. Rousseau, C. Coutanceau, C. Lamy, Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J. Power Sources 158, 18–24 (2006)

    Article  CAS  Google Scholar 

  7. Y.S. Li, T.S. Zhao, Z.X. Liang, Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J. Power Sources 187, 387–392 (2009)

  8. H. Li, G. Sun, Q. Jiang, M. Zhu, S. Sun., Q. Xin, Synthesis of highly dispersed Pd/C electro-catalyst with high activity for formic acid oxidation. Electrochem. Commun. 9, 1410–1415 (2007)

  9. Y. Fang, X. Yang, L. Wang, L, Y. Liu, An alkaline direct methanol fuel cell with a polymer fiber membrane and MnO2-catalyzed cathode. Electrochim. Acta 90 421–425 (2013)

  10. L. An, T.S. Zhao, S.Y. Shen, Q.X. Wu, R. Chen, Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output. J. Power Sources 196, 186–190 (2011)

  11. Y.S. Li, T.S. Zhao, Ultra-low catalyst loading cathode electrode for anion-exchange membrane fuel cells. Int. J. Hydrogen Energy 37, 15334–15338 (2012)

    Article  CAS  Google Scholar 

  12. W.J. Zhou, S.Q. Song, W.Y. Li, Z.H. Zhou, G.Q. Sun, Q. Xin, S. Douvartzides, P. Tsiakaras, Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance. J. Power Sources 140, 50–58 (2005)

    Article  CAS  Google Scholar 

  13. C. Lamy, A. Devadas, M. Simoes, C. Coutanceau, Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC). Electrochim. Acta 60, 112–120 (2012)

    Article  CAS  Google Scholar 

  14. C. Wang, Y. Hou, J. Kim, S. Sun, A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem. Int. Ed. Engl. 46, 6333–6335 (2007)

    Article  CAS  Google Scholar 

  15. K.I. Ozoemena, Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: catalyst design, principles and applications. RSC Adv. 6, 89523–89550 (2016)

  16. X. Wang, W. Wang, Z. Qi, C. Zhao, H. Ji, Z. Zhang, Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation. J. Power Sources 195, 6740–6747 (2010)

    Article  CAS  Google Scholar 

  17. Y.L. Wang, Y.Q. Zhao, C.L. Xu, D.D. Zhao, M.W. Xu, Z.X. Su, H.L. Li , Improved performance of Pd electrocatalyst supported on three-dimensional nickel foam for direct ethanol fuel cells. J. Power Sources 195, 6496–6499 (2010)

  18. F. Hu, C. Chen, Z. Wang, G. Wei, P.K. Shen, Mechanistic study of ethanol oxidation on Pd–NiO/C electrocatalyst. Electrochim. Acta 52, 1087–1091 (2006)

    Article  CAS  Google Scholar 

  19. J. Bagchi, S.K. Bhattacharya, Electrocatalytic activity of binary palladium ruthenium anode catalyst on Ni-support for ethanol alkaline fuel cells. Transit. Met. Chem. 32, 47–55 (2007)

    Article  CAS  Google Scholar 

  20. B. Bae, B.K. Kho, T.H. Lim, I.H. Oh, S.A. Hong, H.Y. Ha, Performance evaluation of passive DMFC single cells. J. Power Sources 158, 1256–1261 (2006)

  21. A. Faghri, Z. Guo, An innovative passive DMFC technology. Appl. Therm. Eng. 28(13), 1614–1622 (2008)

    Article  CAS  Google Scholar 

  22. D. Kim, E.A. Cho, S.A. Hong, I.H. Oh, H.Y. Ha, Recent progress in passive direct methanol fuel cells at KIST. J. Power Sources 130, 172–177 (2004)

  23. Y.H. Pan, Advanced air-breathing direct methanol fuel cells for portable applications. J. Power Sources 161, 282–289 (2006)

    Article  CAS  Google Scholar 

  24. T. Shimizu, Design and fabrication of pumpless small direct methanol fuel cells for portable applications. J. Power Sources 137, 277–283 (2004)

    Article  CAS  Google Scholar 

  25. H. Chang, J.R. Kim, J.H. Cho, H.K. Kim, K.H. Choi, Materials and processes for small fuel cells. Solid State Ionics 148, 601–606 (2002)

    Article  CAS  Google Scholar 

  26. C. Xu, Y. Yuan, A. Cui, R. Yuan, In situ controllable synthesis of Ag @ AgCl core-shell nanoparticles on graphene oxide sheets. J. Mater Sci 48, 967–973 (2013)

    Article  CAS  Google Scholar 

  27. S. Ali, I. Khan, S.A. Khan, M. Sohail, R. Ahmed, A. Rheman, M.S. Ansari, M.A. Mony, Electrocatalytic performance of Ni @ Pt core shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. J. Electroanal Chem 795, 17–25 (2017)

    Article  CAS  Google Scholar 

  28. Z. Zong, K. Xu, D. Li, Z. Tang, W. He, Z. Liu, X. Wand, Y. Tian, Peptide templated Au @ Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. J. Catal 361, 168–176 (2018)

    Article  CAS  Google Scholar 

  29. O.O. Fashedemi, B. Julies, K.I. Ozoemena, Synthesis of Pd-coated FeCo @ Fe / C core – shell nanoparticles: microwave-induced “top-down” nanostructuring and decoration. Chem. Commun. 49, 2034–2036 (2013)

    Article  CAS  Google Scholar 

  30. O.O. Fashedemi, H.A. Miller, A. Marchionni, F. Vizza, K.I. Ozoemena, Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core–shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity. J. Mater. Chem. A 3, 7145–7156 (2015)

    Article  CAS  Google Scholar 

  31. O.O. Fashedemi, K.I. Ozoemena, Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@ Fe/C core-shell nanocatalysts. Electrochim. Acta 28, 279- 286 (2014)

  32. O.O. Fashedemi, K.I. Ozoemena, Enhanced methanol oxidation and oxygen reduction reactions on palladium-decorated FeCo@ Fe/C core–shell nanocatalysts in alkaline medium Phys. Chem. Chem. Phys. 15, 20982–20991 (2014)

    Article  Google Scholar 

  33. J. Zhao, A. Sarkar, A. Manthiram, Synthesis and characterization of Pd-Ni nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. Electrochim. Acta 55, 1756–1765 (2010)

    Article  CAS  Google Scholar 

  34. W. Huolin, L. Xin, Y. Yu, H. Wang, E. Rus, D.A. Muller, H.D. Abruna, Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 17664–17666 (2010)

    Article  Google Scholar 

  35. L. Gan, M. Heggen, S. Rudi, P. Strasser, Core−Shell Compositional Fine Structures of Dealloyed PtxNi1−x Nanoparticles and their Impact on oxygen reduction catalysis. Nano Lett. 12, 5423–5430 (2012)

    Article  CAS  Google Scholar 

  36. D.J. You, D. HyungKim, J. RoshanDe Lile, C. Li, S. Geol Lee, J.i. ManKim, C. Pak, Pd core-shell alloy catalysts for high-temperature polymer electrolyte membrane fuel cells: Effect of the core composition on the activity towards oxygen reduction reactions. Appl. Catal. A Gen. 25(562), 250–257 (2018)

  37. H. Wang, Z. Liu, Y. Ma, K. Julian, S. Ji, V. Linkov, R. Wang, Synthesis of carbon-supported PdSn–SnO2nanoparticles with different degrees of interfacial contact and enhanced catalytic activities for formic acid oxidation. Phys. Chem. Chem. Phys. 15, 13999–14005 (2013)

    Article  CAS  Google Scholar 

  38. K. Sasaki, H. Naohara, Y. Cai, Y.M. Choi, P. Liu, M.B. Vukmirovic, J.X. Wang, R.R. Adzic, Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. Engl. 49, 8602–8607 (2010)

  39. L. Klaas, M. Modibedi, M. Mathe, H. Su and L. Khotseng, Electrochemical Studies of Pd-Based Anode Catalysts in Alkaline Medium for Direct Glycerol Fuel Cells. Catalysts 10(9), 968 (2020). https://doi.org/10.3390/catal10090968

  40. Z. Yu, J. Xu, I. Amorim, Y. Li, L. Liu, Easy preparation of multifunctional ternary PdNiP/C catalysts toward enhanced small organic molecule electro-oxidation and hydrogen evolution reactions. J. Energy Chem. (2020). https://doi.org/10.1016/j.jechem.2020.10.016

  41. Z. Liu, X. Zhang, L. Hong, Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalyst for methanol oxidation. Electrochem Commun 11, 925–928 (2009)

    Article  CAS  Google Scholar 

  42. H.J. Jiang, Y. Zhou, S.D. Yang, X.Z. Xue, Z.Q. Zhou , X.G. Zhang, D.L. Akins, H. Yang, An efficient reduction route for the production of Pd–Pt nanoparticles anchored on graphene nanosheets for use as durable oxygen reduction electrocatalysts He W., Carbon 50, 265–274 (2012)

  43. N. Kakati, J. Maiti, S.H. Lee, Y.S. Yoon, Core shell like behavior of PdMo nanoparticles on multiwall carbon nanotubes and their methanol oxidation activity in alkaline medium. Int. J. Hydrogen Energy 37, 190555–219064 (2012)

    Article  Google Scholar 

  44. J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong, The effect of methanol concentration on the performance of a passive DMFC. Electrochem. commun. 7, 288–294 (2005)

    Article  CAS  Google Scholar 

  45. Z. Wang, S. Zou, Wei - Bin Cai. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials. Catalysts 5, 1507–1534 (2015)

    Article  Google Scholar 

  46. A.B. Yaroslavtsev, Yu.A. Dobrovolsky, N.S. Shaglaeva, L.A. Frolova, E.V. Gerasimova, E.A. Sanginov, Nanostructured materials for low-temperature fuel cells. Russ. Chem. Rev. 81(3), 191–220 (2012)

    Article  CAS  Google Scholar 

  47. M.V. Martínez, M.J. Lázaro Huerta, Electrocatalysts for low temperature fuel cells. Catal. Today. 285, 3–12 (2017)

  48. R. Baronia, J. Goel, S. Tiwari, P. Singh, D. Singh, S.P. Singh, S.K. Singhal, Efficient electro-oxidation of methanol using PtCo nanocatalysts supported reduced graphene oxide matrix as anode for DMFC. Int. J. Hydrogen Energy 42(15), 10238–10247 (2017)

    Article  CAS  Google Scholar 

  49. S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 195, 1001–1006 (2010)

    Article  CAS  Google Scholar 

  50. Q. Zhang, Z. Yang, Y. Ling, X. Yu, Y. Zhang, H. Cheng, Improvement in stability of PtRu electrocatalyst by carbonization of in-situ polymerized polyaniline. Int. J. Hydrogen Energy 43(28), 12730–12738 (2018)

    Article  CAS  Google Scholar 

  51. L. Zhao, Z. Bo, W. Jing, L. Jing-Jia, Zhang, X.L. Sui, L.M. Zhang, D.M. Gu, Facile one-pot synthesis of Pt/graphene-TiO2 hybrid catalyst with enhanced methanol electrooxidation performance. J. Power Sources 279 210–217 (2015)

  52. T. Jurzinsky, R. Bär, C. Cremers, J. Tübke, P. Elsner, Highly active carbon supported palladium-rhodium PdXRh/C catalysts for methanol electrooxidation in alkaline media and their performance in anion exchange direct methanol fuel cells (AEM-DMFCs). Electrochim. Acta 176, 1191–1201 (2015)

  53. B. Lim, J. Wang, P.H. Camargo, M. Jiang, M.J. Kim, Y. Xia, Facile Synthesis of Bimetallic Nanoplates Consisting of Pd Cores and Pt Shells through Seeded Epitaxial Growth. Nano Lett. 8, 2535–2540 (2008)

    Article  CAS  Google Scholar 

  54. Y. Huang, X. Zhou, M. Yin, C. Liu, W. Xing, Novel PdAu@Au/C Core−Shell Catalyst: Superior Activity and Selectivity in Formic Acid Decomposition for Hydrogen Generation. Chem. Mater. 22, 5122–5128 (2010)

    Article  CAS  Google Scholar 

  55. X. Wang, B. He, Z. Hu, Z. Zeng, S. Han, Sci. Current advances in precious metal core–shell catalyst design. Technol. Adv. Mater. 15(043502), 16 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omobosede O. Fashedemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21500 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fashedemi, O.O., Mwonga, P.V., Miller, H.A. et al. Performance of Pd@FeCo Catalyst in Anion Exchange Membrane Alcohol Fuel Cells. Electrocatalysis 12, 295–309 (2021). https://doi.org/10.1007/s12678-021-00655-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00655-w

Keywords

Navigation